UNIFIED APPROACH TO QUANTIFY & VISUALIZE CARDIAC IMAGES

统一的量化方法

基本信息

  • 批准号:
    2028437
  • 负责人:
  • 金额:
    $ 29.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1988
  • 资助国家:
    美国
  • 起止时间:
    1988-12-01 至 1999-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION: Heart disease continues to be the number one killer in the United States, with over 25% of all deaths related to coronary artery disease (CAD). Morbidity and mortality in CAD has long been recognized to be directly related to the extent and the severity of coronary obstruction and the amount of myocardium at risk of infarction. Coronary arteriography and more recently intravascular ultrasound (IVUS) provide anatomic information and are used as the "gold standard" for the assessment of atheromatous obstruction. Emission tomography using single photon (SPECT) or positron emitting radionuclides (PET) provides physiologic information and is used as the clinical "gold standard" for the assessment of regional hypoperfusion and hypometabolism. EKG-synchronized emission tomography has also been valuable in assessing the extent of myocardial dysfunction. Accurate assessment of the extent and severity of CAD requires the multidimensional integration of anatomic and physiologic information obtained independently from these cardiac imaging modalities. However, integration has traditionally been subjective, time consuming, lacking standardization and difficult to conceptualize. The long term objective of the proposed research is to continue to develop and validate computer-based methods for the multidimensional quantification, unification and visualization of complementary, multi-modality cardiac images of coronary anatomy and myocardial perfusion, metabolism and function. Specifically, the aims of the proposed research consist of development, automation and validation of each of the following 4D (x,y,z,t) methodologies: 1) extension of the biplane reconstruction of the coronary vasculature to use two non-simultaneous single projections, to fuse the arterial tree with IVUS, and to optimize the arteriographic procedure through computer guidance of the gantry, 2) extension of the data-based approach to quantify myocardial perfusion, metabolism and function using EKG-gated PET and SPECT and from this information determine the area at risk, and 3) complete the registration and visualization of the coronary vasculature and myocardial perfusion, metabolism and function for a unified, comprehensive assessment of coronary artery disease and determination of amount of myocardium at risk of infarction.
心脏病仍然是世界上的头号杀手。 美国,超过25%的死亡与冠状动脉有关 疾病(CAD)。 CAD的发病率和死亡率长期以来被认为是 与冠状动脉阻塞的范围和严重程度直接相关 和心肌梗死风险的心肌量。 冠状动脉造影 以及最近的血管内超声(IVUS)提供解剖学上的 信息,并被用作评估的“黄金标准”, 动脉粥样硬化性阻塞 单光子发射断层扫描(SPECT) 或正电子发射放射性核素(PET)提供生理信息 并被用作临床“金标准”, 低灌注和低代谢。 心电图同步发射断层扫描 在评估心肌功能障碍的程度方面也有价值。 准确评估CAD的范围和严重程度需要 解剖生理信息多维整合 独立于这些心脏成像模式获得。 然而,在这方面, 传统上,集成是主观的、耗时的、缺乏 标准化,难以概念化。 的长期目标 拟议的研究是继续开发和验证基于计算机的 方法的多维量化,统一和 冠状动脉的互补、多模态心脏图像的可视化 解剖学和心肌灌注、代谢和功能。 具体而言,拟议研究的目标包括发展, 自动化和验证以下每个4D(x,y,z,t) 方法:1)冠状动脉双平面重建的扩展 使用两个不同时的单一投影,以融合 血管内超声的动脉树,并优化动脉造影程序 通过计算机引导的龙门架,2)延伸的数据为基础的 一种使用心肌灌注、代谢和功能的量化方法 EKG门控PET和SPECT,并根据此信息确定 风险,以及3)完成冠状动脉的配准和可视化 血管和心肌的灌注、代谢和功能为统一, 冠状动脉疾病的综合评估和 心肌梗死风险的心肌量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ERNEST V GARCIA其他文献

ERNEST V GARCIA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ERNEST V GARCIA', 18)}}的其他基金

Quantification of myocardial blood flow using Dynamic PET/CTA fused imagery to determine physiological significance of specific coronary lesions
使用动态 PET/CTA 融合图像对心肌血流量进行量化,以确定特定冠状动脉病变的生理意义
  • 批准号:
    9755481
  • 财政年份:
    2018
  • 资助金额:
    $ 29.92万
  • 项目类别:
Quantification of myocardial blood flow using Dynamic PET/CTA fused imagery to determine physiological significance of specific coronary lesions
使用动态 PET/CTA 融合图像对心肌血流量进行量化,以确定特定冠状动脉病变的生理意义
  • 批准号:
    9980994
  • 财政年份:
    2018
  • 资助金额:
    $ 29.92万
  • 项目类别:
Novel WEB Decision Support System for cardiac image interpretation and reporting
用于心脏图像解释和报告的新型 WEB 决策支持系统
  • 批准号:
    8054462
  • 财政年份:
    2011
  • 资助金额:
    $ 29.92万
  • 项目类别:
Novel WEB Decision Support System for cardiac image interpretation and reporting
用于心脏图像解释和报告的新型 WEB 决策支持系统
  • 批准号:
    8427296
  • 财政年份:
    2011
  • 资助金额:
    $ 29.92万
  • 项目类别:
Novel WEB Decision Support System for cardiac image interpretation and reporting
用于心脏图像解释和报告的新型 WEB 决策支持系统
  • 批准号:
    8219341
  • 财政年份:
    2011
  • 资助金额:
    $ 29.92万
  • 项目类别:
UNIFIED APPROACH TO QUANTIFY & VISUALIZE CARDIAC IMAGERY
统一的量化方法
  • 批准号:
    2220264
  • 财政年份:
    1988
  • 资助金额:
    $ 29.92万
  • 项目类别:
UNIFIED APPROACH TO QUANTIFY & VISUALIZE CARDIAC IMAGERY
统一的量化方法
  • 批准号:
    2220265
  • 财政年份:
    1988
  • 资助金额:
    $ 29.92万
  • 项目类别:
UNIFIED APPROACH TO QUANTIFY & VISUALIZE CARDIAC IMAGERY
统一的量化方法
  • 批准号:
    3360022
  • 财政年份:
    1988
  • 资助金额:
    $ 29.92万
  • 项目类别:
UNIFIED APPROACH TO QUANTIFY & VISUALIZE CARDIAC IMAGERY
统一的量化方法
  • 批准号:
    3360026
  • 财政年份:
    1988
  • 资助金额:
    $ 29.92万
  • 项目类别:
UNIFIED APPROACH TO QUANTIFY & VISUALIZE CARDIAC IMAGERY
统一的量化方法
  • 批准号:
    3360024
  • 财政年份:
    1988
  • 资助金额:
    $ 29.92万
  • 项目类别:

相似海外基金

SBIR Phase II: Novel size-changing, gadolinium-free contrast agent for magnetic resonance angiography
SBIR II 期:用于磁共振血管造影的新型尺寸变化、无钆造影剂
  • 批准号:
    2322379
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Cooperative Agreement
ImproviNg rEnal outcomes following coronary angiograPhy and/or percuTaneoUs coroNary intErventions: a pragmatic, adaptive, patient-oriented randomized controlled trial
改善冠状动脉造影和/或经皮冠状动脉介入治疗后的肾脏结局:一项务实、适应性、以患者为导向的随机对照试验
  • 批准号:
    478732
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Operating Grants
Neonatal Optical Coherence Tomography Angiography to Assess the Effects of Postnatal Exposures on Retinal Development and Predict Neurodevelopmental Outcomes
新生儿光学相干断层扫描血管造影评估产后暴露对视网膜发育的影响并预测神经发育结果
  • 批准号:
    10588086
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
Highly Accelerated Magnetic Resonance Angiography using Deep Learning
使用深度学习的高加速磁共振血管造影
  • 批准号:
    2886357
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Studentship
Development of a method to simultaneously obtain cerebral blood flow information and progression of cerebral white matter lesions using head MR angiography.
开发一种使用头部磁共振血管造影同时获取脑血流信息和脑白质病变进展的方法。
  • 批准号:
    23K14839
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of a new diagnostic method for coronary artery disease using automated image analysis with postmortem coronary angiography CT
使用死后冠状动脉造影 CT 自动图像分析开发冠状动脉疾病的新诊断方法
  • 批准号:
    23K19795
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Novel ultrahigh speed swept source OCT angiography methods in diabetic retinopathy
糖尿病视网膜病变的新型超高速扫源 OCT 血管造影方法
  • 批准号:
    10656644
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
  • 批准号:
    10759721
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
SCH: A physics-informed machine learning approach to dynamic blood flow analysis from static subtraction computed tomographic angiography imaging
SCH:一种基于物理的机器学习方法,用于从静态减影计算机断层血管造影成像中进行动态血流分析
  • 批准号:
    2205265
  • 财政年份:
    2022
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了