SCH: A physics-informed machine learning approach to dynamic blood flow analysis from static subtraction computed tomographic angiography imaging
SCH:一种基于物理的机器学习方法,用于从静态减影计算机断层血管造影成像中进行动态血流分析
基本信息
- 批准号:2205265
- 负责人:
- 金额:$ 110万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Recent investigations have shown that interactions of blood flow with blood vessel walls plays an important role in the progression of cardiovascular diseases. Accurately quantifying blood flow or hemodynamic interactions could lead to methods for patient-specific therapies that result in better treatments and reduced mortality. In this project, the researchers will develop techniques to non-invasively inferring the complex, dynamic hemodynamic behavior using a commonly used medical imaging modality that is typically used to produce static anatomical images for analyzing blood vessel structure. In this project, the researchers propose to develop a novel physics-informed model of the blood flow using a deep-learning based processing method. This will allow the researchers infer dynamic time-resolved three-dimensional blood velocity and relative pressure field. The results will be used to accurately compute relevant hemodynamic factors. This project will train a cohort of graduate students in the latest data-driven deep learning techniques in engineering. It will engage undergraduate students in research through well-established programs at UW Milwaukee and Northern Arizona University. Outreach to high school students, particularly those belonging to under-represented communities will be accomplished through summer programs at UW Milwaukee. The goal of this project is accurate image-based hemodynamic analysis using commonly available images. Contrast concentration, three-dimensional blood velocity, and relative pressure will be modeled as deep neural nets. Training the neural nets will involve a loss function that matches actual data from time-stamped sCTA sinograms with predicted sinograms generated using line integrals computed from forward evaluation of the neural net used to model the contrast concentration. Additionally, blood flow and contrast advection-diffusion physics will be used as constraints in the solution process. System noise will be handled through a Bayesian formulation of the deep learning algorithm. The neural net formulation will allow high resolution sampling of the blood velocity and relative pressure fields and accurate computation of velocity-derive hemodynamic parameters using automatic differentiation. The methods will be validated using numerical and in vitro flow experiments using particle image velocimetry. By enabling the estimation of hemodynamic data from what, until now, has been considered to be static data, the proposed research maximizes inference that can be derived from sCTA imaging data without the need for additional computed tomography hardware or new scan protocols.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近的研究表明,血流与血管壁的相互作用在心血管疾病的发展中起着重要的作用。准确地量化血流或血流动力学相互作用可能导致针对患者的治疗方法,从而产生更好的治疗和降低死亡率。在这个项目中,研究人员将开发技术,使用通常用于产生用于分析血管结构的静态解剖图像的常用医学成像模式,非侵入性地推断复杂的动态血流动力学行为。在这个项目中,研究人员建议使用基于深度学习的处理方法来开发一种新的物理信息血流模型。这将使研究人员能够推断动态的时间分辨率三维血流速度和相对压力场。结果将被用于准确计算相关的血流动力学因素。这个项目将培训一批研究生,学习工程学中最新的数据驱动的深度学习技术。它将通过密尔沃基大学和北亚利桑那大学成熟的项目吸引本科生参与研究。将通过密尔沃基大学密尔沃基分校的暑期项目,向高中生,特别是那些属于代表性不足社区的高中生开展外联活动。该项目的目标是使用常用图像进行准确的基于图像的血流动力学分析。对比度浓度、三维血流速度和相对压力将被建模为深神经网络。训练神经网络将涉及损失函数,该损失函数将来自带有时间戳的SCTA正弦图的实际数据与使用从用于对对比度浓度建模的神经网络的正向评估计算的线积分生成的预测正弦图相匹配。此外,在求解过程中将使用血液流动和对比度平流-扩散物理作为约束。系统噪声将通过深度学习算法的贝叶斯公式来处理。神经网络公式将允许对血流速度场和相对压力场进行高分辨率采样,并使用自动微分精确计算速度派生的血流动力学参数。这些方法将通过使用粒子图像测速仪的数值和体外流动实验来验证。通过能够从到目前为止被认为是静态数据的血液动力学数据进行估计,拟议的研究最大化了可以从SCTA成像数据得出的推断,而不需要额外的计算机断层扫描硬件或新的扫描协议。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ensemble physics informed neural networks: A framework to improve inverse transport modeling in heterogeneous domains
集合物理通知神经网络:改进异构域逆向传输建模的框架
- DOI:10.1063/5.0150016
- 发表时间:2023
- 期刊:
- 影响因子:4.6
- 作者:Aliakbari, Maryam;Soltany Sadrabadi, Mohammadreza;Vadasz, Peter;Arzani, Amirhossein
- 通讯作者:Arzani, Amirhossein
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roshan D'souza其他文献
SEGMENTAL STRAIN AND POST-SYSTOLIC SHORTENING IN RIGHT VENTRICLES OF CHILDREN WITH HYPOPLASTIC LEFT HEART SYNDROME DURING THREE STAGES OF REPAIR
- DOI:
10.1016/s0735-1097(14)61183-9 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:
- 作者:
Roshan D'souza;Anirban Banerjee;Saurabh Patel - 通讯作者:
Saurabh Patel
Roshan D'souza的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roshan D'souza', 18)}}的其他基金
Collaborative Research: Enhanced 4D-Flow MRI through Deep Data Assimilation for Hemodynamic Analysis of Cardiovascular Flows
合作研究:通过深度数据同化增强 4D-Flow MRI 用于心血管血流的血流动力学分析
- 批准号:
2103560 - 财政年份:2021
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
CRI II-New: Data-Parallel Platform for Large-Scale Simulation of Agent-Based Models in Systems Biology
CRI II-新:系统生物学中基于代理的模型大规模模拟的数据并行平台
- 批准号:
0855107 - 财政年份:2009
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
Graphics Hardware Accelerated Real-Time Machinability Analysis of Free-Form Surfaces
图形硬件加速自由曲面的实时可加工性分析
- 批准号:
0968518 - 财政年份:2009
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
CAREER: Towards Interactive Simulation of Giga-Scale Agent-Based Models on Graphics Processing Units
职业:在图形处理单元上进行基于千兆级代理的模型的交互式仿真
- 批准号:
1013278 - 财政年份:2009
- 资助金额:
$ 110万 - 项目类别:
Continuing Grant
CAREER: Towards Interactive Simulation of Giga-Scale Agent-Based Models on Graphics Processing Units
职业:在图形处理单元上进行基于千兆级代理的模型的交互式仿真
- 批准号:
0845284 - 财政年份:2009
- 资助金额:
$ 110万 - 项目类别:
Continuing Grant
CRI II-New: Data-Parallel Platform for Large-Scale Simulation of Agent-Based Models in Systems Biology
CRI II-新:系统生物学中基于代理的模型大规模模拟的数据并行平台
- 批准号:
0968519 - 财政年份:2009
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
SGER: Exploring Data-Parallel Techniques for Mega-Scale Agent Based Model Simulations on Graphics Processing Units
SGER:探索图形处理单元上基于大规模代理的模型仿真的数据并行技术
- 批准号:
0840666 - 财政年份:2008
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
Graphics Hardware Accelerated Real-Time Machinability Analysis of Free-Form Surfaces
图形硬件加速自由曲面的实时可加工性分析
- 批准号:
0729280 - 财政年份:2007
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
SGER: Preliminary Investigation of Selective Volumetric Sintering of Powder Metallurgy Parts Using Microwaves
SGER:使用微波选择性体积烧结粉末冶金零件的初步研究
- 批准号:
0542463 - 财政年份:2005
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
相似国自然基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Chinese Physics B
- 批准号:11224806
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Frontiers of Physics 出版资助
- 批准号:11224805
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
tau轻子衰变与新物理模型唯象研究
- 批准号:11005033
- 批准年份:2010
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
Chinese physics B
- 批准号:11024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
新强子态研究
- 批准号:10905053
- 批准年份:2009
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高能强子对撞机Higgs衰变到双光子末态的寻找
- 批准号:10975134
- 批准年份:2009
- 资助金额:40.0 万元
- 项目类别:面上项目
强子对撞机上新物理信号的多轻子末态研究
- 批准号:10675110
- 批准年份:2006
- 资助金额:36.0 万元
- 项目类别:面上项目
强子对撞物理中的R宇称现象学研究
- 批准号:10575095
- 批准年份:2005
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Discovering early biomarkers of Alzheimer's disease using genetic and physics-informed networks
利用遗传和物理信息网络发现阿尔茨海默病的早期生物标志物
- 批准号:
2904538 - 财政年份:2024
- 资助金额:
$ 110万 - 项目类别:
Studentship
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
- 批准号:
EP/Y027930/1 - 财政年份:2024
- 资助金额:
$ 110万 - 项目类别:
Fellowship
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
CAREER: Physics-Informed Deep Learning for Understanding Earthquake Slip Complexity
职业:基于物理的深度学习用于理解地震滑动的复杂性
- 批准号:
2339996 - 财政年份:2024
- 资助金额:
$ 110万 - 项目类别:
Continuing Grant
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
- 批准号:
2338555 - 财政年份:2024
- 资助金额:
$ 110万 - 项目类别:
Continuing Grant
A New Tsunami Model Using Physics-Informed Neural Networks (PINNs) for Real-Time Tsunami Simulation
使用物理信息神经网络 (PINN) 进行实时海啸模拟的新海啸模型
- 批准号:
24K08013 - 财政年份:2024
- 资助金额:
$ 110万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Physics-informed Graph Learning for Anomaly Detection in Power Systems
职业:用于电力系统异常检测的物理信息图学习
- 批准号:
2338642 - 财政年份:2024
- 资助金额:
$ 110万 - 项目类别:
Continuing Grant
CAREER: Design of Cellular Mechanical Metamaterials under Uncertainty with Physics-Informed and Data-Driven Machine Learning
职业:利用物理信息和数据驱动的机器学习在不确定性下设计细胞机械超材料
- 批准号:
2236947 - 财政年份:2023
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
CPS Medium: Collaborative Research: Physics-Informed Learning and Control of Passive and Hybrid Conditioning Systems in Buildings
CPS 媒介:协作研究:建筑物中被动和混合空调系统的物理信息学习和控制
- 批准号:
2241796 - 财政年份:2023
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 110万 - 项目类别:
Standard Grant