BIOCHEMISTRY OF ENERGY DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION
能量依赖性(细胞内)蛋白质降解的生物化学
基本信息
- 批准号:2463651
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:Escherichia coli active sites adenosine triphosphate adenosinetriphosphatase bacterial proteins bioenergetics chemical stability complementary DNA electron microscopy endopeptidases enzyme activity enzyme complex enzyme structure enzyme substrate enzyme substrate complex human genetic material tag human tissue intermolecular interaction molecular chaperones protein degradation
项目摘要
ATP-dependent proteases degrade important regulatory proteins and help
dispose of damaged and denatured proteins in the cell. Our research
is focused on the specificity and mechanism of action of the Clp and
Lon proteases of E. coli and human cells. Sequence analysis of a
genomic clone of human LON, which produces an ATP-dependent protease
targeted to mitochondria, has located the positions of 16 introns.
This information will help in determining structurally distinct regions
of Lon and suggests fusion joints for the construction of chimeric Lon
proteases. To date, human LON cDNA clones, as well as several chimeras
of human and E. coli lon, have proven to be unstable in E. coli, and
the protein is poorly expressed and unstable. Other expression systems
are being used (Vaccinia) or are under construction (yeast) to provide
model systems to test the effects of mutational changes on Lon activity
in vivo. In studies in which purified E. coli Lon protease was used
to degrade purified CcdA, ATP hydrolysis was shown to be required for
disruption of the secondary structure of CcdA, presumably to allow
greater ease of entry to the proteolytic active sites. Conditions that
stabilize secondary structure, such as functional interaction with
other proteins, protect CcdA from degradation. The sequence of E. coli
ClpA suggested, and electron micrographs confirmed, that the protein
has two ATPase domains, and mutational studies indicated that the
C-terminal domain was important for the activation of ClpP. In
protease protection assays, addition of ClpP protected the C-terminal
but not the N-terminal domain of ClpA, indicating that the C-terminal
ATPase domain interacts with ClpP. A novel member of the Clp protease
family, ClpYQ, was cloned and the proteins purified. ClpY and ClpQ
were isolated separately and could be combined to form a high molecular
weight complex with ATP-dependent protein degrading activity. Electron
micrographs show that subunits of ClpQ are arranged in the form of a
hexagonal ring. In this regard, ClpQ differs strikingly from the
heptagonal 20 S proteasome, despite the significant degree of homology
between these proteins. Binding of ATP stabilizes an oligomeric form
of ClpY which also has a hexagonal structure. Because earlier studies
had shown that ClpA is a hexamer and ClpP is a heptamer, it was
postulated that asymmetric interactions between subunits may be
important during the catalytic cycle. However, the identical six-fold
symmetries of ClpY and ClpQ in the ClpYQ complex indicate that a
symmetry mismatch is not essential for coupling activity of the
ATP-dependent chaperone to that of the proteolytic component.
ATP依赖性蛋白酶降解重要的调节蛋白,
处理细胞中受损和变性的蛋白质。 我们的研究
是集中在特异性和作用机制的CLP和
大肠杆菌的Lon蛋白酶。大肠杆菌和人类细胞。 序列分析
人LON的基因组克隆,其产生ATP依赖性蛋白酶
针对线粒体,定位了16个内含子的位置。
这些信息将有助于确定结构上不同的区域
并建议融合关节的嵌合Lon的建设
蛋白酶 迄今为止,人LON cDNA克隆以及几种嵌合体
人和E. coli lon,已证明在E.杆菌和
该蛋白质表达差且不稳定。 其它表达系统
正在使用(牛痘)或正在建设(酵母),以提供
测试突变变化对Lon活性的影响的模型系统
in vivo. 在研究中,纯化的E. coli Lon蛋白酶
为了降解纯化的CcdA,ATP水解被证明是必需的。
破坏CcdA的二级结构,可能是为了
更容易进入蛋白水解活性位点。 的条件
稳定二级结构,例如与
其他蛋白质,保护CcdA免受降解。 对E.杆菌
ClpA表明,电子显微镜证实,
具有两个ATP酶结构域,突变研究表明,
C端结构域对ClpP的激活起重要作用。 在
蛋白酶保护测定,ClpP的加入保护了C-末端
而不是ClpA的N-末端结构域,表明ClpA的C-末端结构域
ATP酶结构域与ClpP相互作用。 Clp蛋白酶的新成员
克隆了ClpYQ家族,并纯化了蛋白质。 ClpY和ClpQ
分别分离得到,并可结合形成高分子
具有ATP依赖性蛋白质降解活性的重量复合物。 电子
显微照片显示,ClpQ的亚基以α-淀粉样蛋白的形式排列,
六角环 在这方面,ClpQ与
七角形20 S蛋白酶体,尽管有显着程度的同源性
这些蛋白质之间。 ATP的结合稳定了寡聚体形式
的ClpY,其也具有六方结构。 因为早期的研究
已经表明ClpA是六聚体,ClpP是七聚体,
假设亚基之间的不对称相互作用可能是
在催化循环中起重要作用。 然而,同样的六重
ClpYQ复合物中ClpY和ClpQ的对称性表明,
对称性错配对于偶联活性不是必需的,
ATP依赖性分子伴侣与蛋白水解组分的分子伴侣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
M R MAURIZI其他文献
M R MAURIZI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('M R MAURIZI', 18)}}的其他基金
BIOCHEMISTRY OF ENERGY-DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION
能量依赖性(细胞内)蛋白质降解的生物化学
- 批准号:
3752024 - 财政年份:
- 资助金额:
-- - 项目类别:
BIOCHEMISTRY OF ENERGY-DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION
能量依赖性(细胞内)蛋白质降解的生物化学
- 批准号:
3774309 - 财政年份:
- 资助金额:
-- - 项目类别:
BIOCHEMISTRY OF ENERGY-DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION
能量依赖性(细胞内)蛋白质降解的生物化学
- 批准号:
3813346 - 财政年份:
- 资助金额:
-- - 项目类别:
BIOCHEMISTRY OF ENERGY-DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION
能量依赖性(细胞内)蛋白质降解的生物化学
- 批准号:
5200937 - 财政年份:
- 资助金额:
-- - 项目类别:
BIOCHEMISTRY OF ENERGY DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION
能量依赖性(细胞内)蛋白质降解的生物化学
- 批准号:
6100828 - 财政年份:
- 资助金额:
-- - 项目类别:
BIOCHEMISTRY OF ENERGY-DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION
能量依赖性(细胞内)蛋白质降解的生物化学
- 批准号:
3796453 - 财政年份:
- 资助金额:
-- - 项目类别:
BIOCHEMISTRY OF ENERGY DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION
能量依赖性(细胞内)蛋白质降解的生物化学
- 批准号:
6160928 - 财政年份:
- 资助金额:
-- - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




