BIOCHEMISTRY OF ENERGY-DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION
能量依赖性(细胞内)蛋白质降解的生物化学
基本信息
- 批准号:5200937
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:Escherichia coli active sites adenosine triphosphate adenosinetriphosphatase bacterial proteins bioenergetics chemical stability complementary DNA electron microscopy endopeptidases enzyme activity enzyme complex enzyme mechanism enzyme structure enzyme substrate enzyme substrate complex human genetic material tag intermolecular interaction mutant protein degradation
项目摘要
Rapid proteolytic degradation is a major mechanism for modulating the
intracellular concentrations of regulatory proteins and affects
developmental pathways, stress responses, metabolic adaptation, and
essential cell cycle control processes. In vivo, most protein
degradation is energy-dependent. Our research is focused on the
ATP-dependent Clp and Lon proteases of E. coli and their homologs in
mitochondria of human cells. The gene for a human Lon protease has
been mapped to chromosome 19, region 13.3, and a cosmid clone of the
genomic DNA has been isolated. A human cDNA encoding a homolog of
ClpP has been isolated. Human ClpP is more than 50 percent identical
to the bacterial protease at the amino acid level. Human ClpP
expressed in E. coli and purified appears to have an oligomeric
structure similar to the double-donut formed by E. coli ClpP but is
not activated by E. coli ClpA. Electron microscopic studies show E.
coli ClpAP has a structure analogous to that of the eukaryotic 26S
proteasome. ClpP, the proteolytic core of the enzyme, is composed of
superimposed seven-membered rings, whereas ClpA, the ATP-dependent
component with protein unfolding activity, is a bi-lobed ring of only
six subunits. In the ClpAP complex, a hexamer of ClpA is bound to
each heptameric face of ClpP. Changes in these asymmetric
interactions between subunits during the catalytic cycle may be
important for unfolding or translocation of substrates during
ATP-dependent proteolysis. A ClpA mutant with a lysine to glutamine
substitution in the ATP-binding site of the first domain forms mixed
hexamers with wild-type ClpA. Exchange studies with the mutant ClpA
indicate that the half-time for subunit dissociation of ClpA under
assay conditions is more than 8 min. Since the turnover number for
peptide bond cleavage during proteolysis is at least 15 per min,
multiple rounds of degradation occur without dissociation of ClpAP.
Purified E. coli Lon protease requires ATP hydrolysis to degrade
purified native CcdA, a physiological substrate for Lon, whereas
degradation of a truncated form of CcdA by Lon is activated by
nucleotide binding alone. The same peptide bonds are cleaved in each
protein. Thus, ATP hydrolysis does not affect the specificity of the
interaction between substrates and the proteolytic active site, but is
required for unfolding or conformational alteration of the protein.
Interaction with CcdB completely protects CcdA from degradation by
Lon, demonstrating the importance of macromolecular interactions in
determining the stability of regulatory proteins in vivo.
蛋白质的快速降解是调节细胞周期的主要机制
调节蛋白在细胞内的浓度及其影响
发育途径、应激反应、代谢适应和
基本的细胞周期控制过程。在体内,大多数蛋白质
降解是依赖能源的。我们的研究主要集中在
大肠杆菌及其同系物依赖于ATP的CLP和Lon蛋白水解酶
人类细胞的线粒体。人类Lon蛋白水解酶的基因
被定位到19号染色体13.3区,以及一个粘粒克隆
基因组DNA已经被分离出来。编码一个同源基因的人的cDNA
已分离出ClpP。人类ClpP基因的同源性超过50%
在氨基酸水平上对细菌蛋白水解酶的影响。人类ClpP
在大肠杆菌中表达和纯化的似乎有一个寡聚体
与E.ColiClpP形成的双甜甜圈相似的结构,但
不被大肠杆菌ClpA激活。电子显微镜研究表明,E。
ColiClpAP具有与真核26S相似的结构
蛋白酶体。ClpP是该酶的蛋白分解核心,由以下组成
叠加的七元环,而ClpA,依赖于ATP
具有蛋白质展开活性的组分,是仅有的一个双叶环
六个亚基。在ClpAP复合体中,ClpA的六角体结合到
ClpP的每个七聚体表面。这些不对称的变化
催化循环期间亚基之间的相互作用可能是
对于在以下过程中底物的展开或移动很重要
依赖于三磷酸腺苷的蛋白分解。赖氨酸为谷氨酰胺的ClpA突变体
第一结构域形式混合的ATP结合位点上的取代
带有野生型ClpA的六聚体。与突变体ClpA的交流研究
表明ClpA亚基解离的半衰期
测定条件为8min以上。由于成交额为
蛋白质分解过程中的肽键断裂速度至少为每分钟15次,
在没有解离ClpAP的情况下,发生了多轮降解。
纯化的大肠杆菌Lon蛋白酶需要ATP水解酶才能降解
纯化的天然CCDA,Lon的生理底物,而
Lon对截断形式的CCDA的降解通过以下方式激活
单独的核苷酸结合。每一个都裂解了相同的多肽键
蛋白。因此,三磷酸腺苷的水解不影响其特异性。
底物与蛋白降解活性部位之间的相互作用,但
蛋白质的展开或构象改变所必需的。
与Ccdb的交互通过以下方式完全保护CCDA不会降级
Lon,展示了大分子相互作用在
测定体内调节蛋白的稳定性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
M R MAURIZI其他文献
M R MAURIZI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('M R MAURIZI', 18)}}的其他基金
BIOCHEMISTRY OF ENERGY-DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION
能量依赖性(细胞内)蛋白质降解的生物化学
- 批准号:
3774309 - 财政年份:
- 资助金额:
-- - 项目类别:
BIOCHEMISTRY OF ENERGY-DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION
能量依赖性(细胞内)蛋白质降解的生物化学
- 批准号:
3752024 - 财政年份:
- 资助金额:
-- - 项目类别:
BIOCHEMISTRY OF ENERGY-DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION
能量依赖性(细胞内)蛋白质降解的生物化学
- 批准号:
3813346 - 财政年份:
- 资助金额:
-- - 项目类别:
BIOCHEMISTRY OF ENERGY DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION
能量依赖性(细胞内)蛋白质降解的生物化学
- 批准号:
6100828 - 财政年份:
- 资助金额:
-- - 项目类别:
BIOCHEMISTRY OF ENERGY-DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION
能量依赖性(细胞内)蛋白质降解的生物化学
- 批准号:
3796453 - 财政年份:
- 资助金额:
-- - 项目类别:
BIOCHEMISTRY OF ENERGY DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION
能量依赖性(细胞内)蛋白质降解的生物化学
- 批准号:
6160928 - 财政年份:
- 资助金额:
-- - 项目类别:
BIOCHEMISTRY OF ENERGY DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION
能量依赖性(细胞内)蛋白质降解的生物化学
- 批准号:
2463651 - 财政年份:
- 资助金额:
-- - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




