RNA nanotechnology for rapid and sustainable preclinical iteration of gene therapeutics
RNA纳米技术用于基因治疗的快速和可持续的临床前迭代
基本信息
- 批准号:78705
- 负责人:
- 金额:$ 31.82万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Collaborative R&D
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
While traditional pharmaceutical development of small-molecule and protein-based therapeutics can take years to reach patients, a more agile multi-disciplinary approach based on gene therapies has the potential to not only reduce time to market, but also improve therapeutic outcomes and reduce cost. This ability to rapidly engineer gene therapies has been clearly demonstrated during the outbreak of COVID-19, whereby several of the leading SARS-CoV-2 vaccine candidates are utilising mRNA, a form of gene therapy. However, in order to better respond to rapidly emerging viral infections such as COVID-19 and develop more targeted and personalised approaches for the treatment of cancer and genetic disorders, there is a need for a more adaptable approach to the delivery of gene therapies. Current approaches for the delivery of gene therapies, include conjugation, lipid nanoparticles or viral vectors. However, the exploitation of these delivery technologies for diverse indications has been impeded by the limited targeting specificity of diseased cells, toxicity and/or the lengthy and expensive manufacturing process. Sixfold's patented Programmable Oligonucleotide Delivery System (PODS) has been engineered as a rapidly scalable, non-toxic and targeted approach for the delivery of gene therapies. The technology has been validated in vitro and in vivo mammalian systems, showing favourable safety and biodistribution. The technology is unique in that it allows gene therapies to be simply 'clicked' onto their PODS enabling rapid iteration and short design-to-manufacture lead times.The **two objectives** of this project are to introduce a more **rapid development cycle** for fast iteration and introduce a significantly more **sustainable development process from manufacturing through to testing**. The innovative approach outlined in this project seeks to reduce the lead times from the current 24 weeks to 6 weeks, which will allow for a more rapid response to emerging infectious diseases AND the parallel development of gene therapeutics across multiple disease indications. This project will focus on doing this in a more environmentally sustainable way. By partnering with Pharmidex, a leading UK CRO offering in silico and in vivo services, we can reduce our wet lab work and limit the use of animals to only essential studies by using their in silico methodologies for candidate selection and their cascade approach to funnel the best candidates into efficacy testing. Sixfold will also overhaul the manufacturing process reducing reagent consumption and waste, and increasing yield, as well as taking on a more high-throughput approach to in vitro testing which will further reduce plastic waste and the use of animal-derived reagents.The success of this project will make Sixfold world leaders in drug delivery system development times through the introduction of a more agile development methodology into their process and allow Pharmidex to develop a more comprehensive suite of in vivo experimentation services including an expansion into oligonucleotide-based therapeutics.
虽然传统的小分子和蛋白质疗法的药物开发可能需要数年时间才能到达患者,但基于基因疗法的更灵活的多学科方法不仅有可能缩短上市时间,而且还可以改善治疗效果并降低成本。这种快速设计基因疗法的能力在COVID-19爆发期间得到了清楚的证明,其中几种领先的SARS-CoV-2候选疫苗正在利用mRNA,这是一种基因疗法。然而,为了更好地应对快速出现的病毒感染,如COVID-19,并开发更具针对性和个性化的方法来治疗癌症和遗传性疾病,需要一种更具适应性的方法来提供基因疗法。目前用于递送基因疗法的方法包括缀合、脂质纳米颗粒或病毒载体。然而,这些用于不同适应症的递送技术的开发受到病变细胞的有限靶向特异性、毒性和/或冗长且昂贵的制造过程的阻碍。Sixfold的专利可编程寡核苷酸递送系统(PODS)已被设计为一种快速可扩展、无毒和靶向的基因治疗递送方法。该技术已在体外和体内哺乳动物系统中得到验证,显示出良好的安全性和生物分布。该技术的独特之处在于,它允许基因疗法简单地“点击”到他们的PODS上,从而实现快速迭代和短的设计到制造的交付周期。该项目的两个目标是引入一个更快速的开发周期,以实现快速迭代,并引入一个从制造到测试的可持续发展过程。该项目中概述的创新方法旨在将交货时间从目前的24周缩短至6周,这将允许对新出现的传染病做出更快速的反应,并在多种疾病适应症中并行开发基因疗法。该项目将侧重于以环境上更可持续的方式做到这一点。通过与Pharmidex(一家提供计算机模拟和体内服务的领先英国CRO)合作,我们可以减少我们的湿实验室工作,并通过使用其计算机模拟方法进行候选人选择和级联方法将最佳候选人用于功效测试,将动物的使用限制在必要的研究中。Sixfold还将彻底改革制造工艺,减少试剂消耗和浪费,并提高产量,以及采用更高通量的体外测试方法,这将进一步减少塑料废物和动物的使用,该项目的成功将使Sixfold成为药物输送系统开发时代的世界领导者,通过将更敏捷的开发方法引入其过程,允许Pharmidex开发更全面的体内实验服务套件,包括扩展到基于阿托伐他汀的治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
$ 31.82万 - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 31.82万 - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
$ 31.82万 - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
$ 31.82万 - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
$ 31.82万 - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
$ 31.82万 - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
$ 31.82万 - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
$ 31.82万 - 项目类别:
Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
- 批准号:
2879865 - 财政年份:2027
- 资助金额:
$ 31.82万 - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 31.82万 - 项目类别:
Studentship
相似海外基金
Non-invasive detection of tumor NTRK gene fusions via rapid, efficient and low-cost extracellular vesicle isolation method
快速、高效、低成本的细胞外囊泡分离方法无创检测肿瘤NTRK基因融合体
- 批准号:
10707684 - 财政年份:2023
- 资助金额:
$ 31.82万 - 项目类别:
Development of methods for highly multiplexed quantification of cancer proteomes using large-scale nanobody libraries
使用大规模纳米抗体库开发癌症蛋白质组高度多重定量的方法
- 批准号:
10714023 - 财政年份:2023
- 资助金额:
$ 31.82万 - 项目类别:
Point-of-Care Assay for Type 1 Diabetes Diagnosis and Prognostication
1 型糖尿病诊断和预测的即时检测
- 批准号:
10721535 - 财政年份:2023
- 资助金额:
$ 31.82万 - 项目类别:
Microchip for HBV testing using HIV-infected blood samples
使用感染艾滋病毒的血液样本进行乙型肝炎病毒检测的微芯片
- 批准号:
10767533 - 财政年份:2023
- 资助金额:
$ 31.82万 - 项目类别:
Multiplexed electronic counting of scarce protein targets using nucleic acid nanoparticles
使用核酸纳米粒子对稀有蛋白质靶标进行多重电子计数
- 批准号:
10353490 - 财政年份:2022
- 资助金额:
$ 31.82万 - 项目类别:
Multiplexed electronic counting of scarce protein targets using nucleic acid nanoparticles
使用核酸纳米粒子对稀有蛋白质靶标进行多重电子计数
- 批准号:
10611370 - 财政年份:2022
- 资助金额:
$ 31.82万 - 项目类别:
Noninvasive Monitoring of Hepatic Glutathione Depletion Through Blood Test
通过血液检测无创监测肝脏谷胱甘肽消耗情况
- 批准号:
10230423 - 财政年份:2021
- 资助金额:
$ 31.82万 - 项目类别:
Noninvasive Monitoring of Hepatic Glutathione Depletion Through Blood Test
通过血液检测无创监测肝脏谷胱甘肽消耗情况
- 批准号:
10552664 - 财政年份:2021
- 资助金额:
$ 31.82万 - 项目类别:
Noninvasive Monitoring of Hepatic Glutathione Depletion Through Blood Test
通过血液检测无创监测肝脏谷胱甘肽消耗情况
- 批准号:
10377423 - 财政年份:2021
- 资助金额:
$ 31.82万 - 项目类别:
Development of an integrated smartphone/resistive nanosensor for onsite biomonitoring of exposure to pesticides
开发集成智能手机/电阻纳米传感器,用于农药暴露现场生物监测
- 批准号:
10255622 - 财政年份:2021
- 资助金额:
$ 31.82万 - 项目类别: