COMPUTATIONAL NEUROANATOMY OF AGING USING SHAPE ANALYSIS
使用形状分析进行衰老的计算神经解剖学
基本信息
- 批准号:6129113
- 负责人:
- 金额:$ 2.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-01 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (Adapted from Applicant's Abstract): The long term goal of this
project is to develop the mathematical framework and the computer
implementation for quantitatively analyzing brain morphology and
characterizing the way it is affected by normal and diseased aging. The
basis of this methodological framework is a shape transformation that adapts
the morphology of one brain, which is treated as a template, to the
morphology of the brain under analysis. This transformation quantifies
global and local morphological characteristics of the brain under analysis,
with respect to the template which serves as a measurement unit.
Inter-subject and inter-population comparisons are performed by comparing
the corresponding shape transformations. The first specific aim of this
project is to develop and validate a geometry-based shape transformation
methodology, utilizing anatomical features extracted from MR images.
Special emphasis is given to the geometric analysis of the cortical sulci
often demarcating the boundaries between different functional cortical
regions, and to structural irregularities, such as ventricular expansion and
brain atrophy, occurring with aging and brain diseases. The second specific
aim is to develop and validate a framework for characterizing shape
properties of brain structures, such as local tissue loss and shape
abnormalities, utilizing the shape transformation above. Finally, the third
specific aim of this project is to test the utility of these methodologies
in brain imaging studies, by applying them to a longitudinal study of aging.
The goal here is to localize subtle morphological changes occurring in the
brain with aging, and to associate such morphological changes with
concurrent or subsequent functional and cognitive changes, which might be
predictors of Alzheimer's disease.
描述(改编自申请人的摘要):本发明的长期目标是:
项目是开发数学框架和计算机
用于定量分析脑形态的实施方式,
表征其受正常和疾病衰老影响的方式。 的
这种方法论框架的基础是一种形状转换,
一个大脑的形态,被当作一个模板,
大脑的形态分析。 这种转变量化了
所分析的大脑的整体和局部形态特征,
相对于用作测量单元的模板。
受试者间和人群间比较通过比较
对应的形状变换。 第一个具体目标是
一个项目是开发和验证一个基于几何的形状转换
方法,利用从MR图像中提取的解剖特征。
特别强调了皮质沟的几何分析
常常在不同的功能皮层之间划分界限
区域,以及结构不规则,如心室扩张和
脑萎缩,发生与老化和脑部疾病。 第二特定
目的是开发和验证一个表征形状的框架
大脑结构的特性,如局部组织损失和形状
异常,利用上面的形状变换。 第三个
本项目的具体目标是测试这些方法的实用性
在大脑成像研究中,通过将其应用于衰老的纵向研究。
这里的目标是定位细胞中发生的微妙形态变化
大脑与衰老,并将这种形态学变化与
同时或随后的功能和认知变化,这可能是
阿尔茨海默病的预测因子
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christos Davatzikos其他文献
Christos Davatzikos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christos Davatzikos', 18)}}的其他基金
Disentangling the anatomical, functional and clinical heterogeneity of major depression, using machine learning methods
使用机器学习方法解开重度抑郁症的解剖学、功能和临床异质性
- 批准号:
10714834 - 财政年份:2023
- 资助金额:
$ 2.08万 - 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
- 批准号:
10625442 - 财政年份:2022
- 资助金额:
$ 2.08万 - 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
- 批准号:
10421222 - 财政年份:2022
- 资助金额:
$ 2.08万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10696100 - 财政年份:2020
- 资助金额:
$ 2.08万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10263220 - 财政年份:2020
- 资助金额:
$ 2.08万 - 项目类别:
Benchmarking and Comparing AD-Related AI Methods Across Sites on a Standardized Dataset
在标准化数据集上跨站点对 AD 相关 AI 方法进行基准测试和比较
- 批准号:
10825403 - 财政年份:2020
- 资助金额:
$ 2.08万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10475286 - 财政年份:2020
- 资助金额:
$ 2.08万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10028746 - 财政年份:2020
- 资助金额:
$ 2.08万 - 项目类别:
Machine Learning and Large-scale Imaging analytics for dimensional representations of brain trajectories in aging and preclinical Alzheimer's Disease: The brain aging chart and the iSTAGING consortium
机器学习和大规模成像分析,用于衰老和临床前阿尔茨海默氏病大脑轨迹的维度表示:大脑衰老图表和 iSTAGING 联盟
- 批准号:
10839623 - 财政年份:2017
- 资助金额:
$ 2.08万 - 项目类别: