Seeing Data: are good big data visualisations possible?
查看数据:良好的大数据可视化可能吗?
基本信息
- 批准号:AH/L009986/2
- 负责人:
- 金额:$ 11.3万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Seeing Data focuses on how people perceive representations of big data; that is, data visualisations. The proposed research starts from the premise that data are constructed by human decisions made during the data generation process. They are never raw, but always cooked (Bowker 2005); they do not just exist, but need to be generated (Manovich 2011). But big data are often assumed to 'just exist', and their representation through visualisations are taken as windows onto the world, even though some commentators have highlighted the dangers of such assumptions. For example Crawford (2013) states that 'the map is not the territory' in order to warn us against seeing visual representations of things as the things themselves. A second premise of the research is that the main way in which the general public gets to access big data is through data visualisations, 'the representation and presentation of data that exploits our visual perception abilities in order to amplify cognition' (Kirk 2013). Data visualisations, like the big data on which they are often based, are becoming increasingly ubiquitous: David McCandless's billion-dollar-o-gram, an animated visualisation of years lost due to US gun deaths and the website We Feel Fine which captures sentiment expressed online are just three examples of widely circulating data visualisations. If big data are constructed by the ways in which they are generated and if data visualisations are the main source of popular access to big data, then critical questions about the role of data visualisations need to be asked. We need to explore whether, given these factors, effective big data visualisations are ever possible, and if so, how effectiveness might be measured. In order to answer these questions, more understanding of the reception of data visualisations is needed. Seeing Data addresses this issue. The proposed research involves generating big data, combining it with existing data, visualizing that data, and examining the reception of these visualisations amongst the general public, who are the main consumers of data visualisations. Through these methods, the research will develop understanding of the reception of data visualisations, which will then be shared with the producers and consumers of such visualisations. Thus the research aims to enhance both the production and consumption of data visualisations.Questions about the reception of big data visualisations will be addressed through collaborative research carried out by a new media scholar, a data visualisation expert, a social science researcher working with large scale data and a visual communications scholar. Our empirical research takes as a case study data about a contentious social issue, migration, which is held by the Migration Observatory (MigObs) at the University of Oxford. MigObs aims to provide impartial, evidence-based analysis of data on migration and migrants in the UK, to inform media, public and policy debates; our research will explore whether data visualisations make it possible to meet this aim. Combining existing data about migration with newly-generated datasets, we will recruit field-leading data visualizers to produce visualisations of MigObs data. We will examine the reception of these visualisations in detail through in-depth focus group discussions with consumers of visualisations from the general public. To support this case study, we will also ask other consumers to keep diaries of their encounters with data visualisations in their everyday lives and their reactions to them. Thus we will explore whether effective big data visualisations are possible, given the constructedness of data and visualisations, what effectiveness might mean in this context and how effectiveness might be measured. We will also concretely help MigObs address some of the challenges it faces in clearly communicating its data to a range of stakeholders.
Seeing Data专注于人们如何感知大数据的表示,即数据可视化。拟议的研究从数据是由数据生成过程中的人类决策构建的前提开始。它们从来不是生的,但总是煮熟的(Bowker 2005);它们不仅存在,而且需要生成(Manovich 2011)。但大数据通常被认为是“存在的”,它们通过可视化的表现被视为通往世界的窗口,尽管一些评论家强调了这种假设的危险。例如,Crawford(2013)指出“地图不是领土”,以警告我们不要将事物的视觉表示视为事物本身。研究的第二个前提是,公众获取大数据的主要方式是通过数据可视化,“利用我们的视觉感知能力来放大认知的数据的表示和呈现”(Kirk 2013)。数据可视化,就像它们通常所基于的大数据一样,正变得越来越普遍:大卫·麦克坎迪斯的十亿美元的O-gram,一个因美国枪支死亡而失去的多年的动画可视化,以及网站We Feel Fine,它捕捉了在线表达的情绪,这只是广泛传播的数据可视化的三个例子。如果大数据是由它们生成的方式构建的,如果数据可视化是大众访问大数据的主要来源,那么需要询问有关数据可视化作用的关键问题。考虑到这些因素,我们需要探索有效的大数据可视化是否可能,如果可能,如何衡量有效性。为了回答这些问题,需要更多地了解数据可视化的接收。看到数据解决了这个问题。拟议的研究涉及生成大数据,将其与现有数据相结合,可视化该数据,并检查公众对这些可视化的接受情况,他们是数据可视化的主要消费者。通过这些方法,研究将发展对数据可视化接收的理解,然后将与这些可视化的生产者和消费者分享。因此,本研究旨在提高数据可视化的生产和消费,并通过一位新媒体学者、一位数据可视化专家、一位从事大规模数据研究的社会科学研究人员和一位视觉传播学者的合作研究,解决有关大数据可视化接受的问题。我们的实证研究需要作为一个案例研究数据关于一个有争议的社会问题,移民,这是由移民观察站(MigObs)在牛津大学举行。MigObs旨在为英国的移民和移民数据提供公正,基于证据的分析,为媒体,公众和政策辩论提供信息;我们的研究将探讨数据可视化是否可以实现这一目标。结合现有的迁移数据和新生成的数据集,我们将招募领域领先的数据可视化人员来生成MigObs数据的可视化。我们将通过与普通公众的视觉化消费者进行深入的焦点小组讨论,详细研究这些视觉化的接受情况。为了支持这个案例研究,我们还将要求其他消费者记录他们在日常生活中遇到的数据可视化以及他们对这些数据可视化的反应。因此,我们将探讨有效的大数据可视化是否可能,考虑到数据和可视化的构建性,在这种情况下有效性可能意味着什么以及如何衡量有效性。我们还将具体帮助MigObs解决其在向一系列利益相关者清晰传达数据方面面临的一些挑战。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Visual brokerage: Communicating data and research through visualisation.
- DOI:10.1177/0963662518756853
- 发表时间:2018-11
- 期刊:
- 影响因子:0
- 作者:Allen WL
- 通讯作者:Allen WL
The Feeling of Numbers: Emotions in Everyday Engagements with Data and Their Visualisation
- DOI:10.1177/0038038516674675
- 发表时间:2018-08-01
- 期刊:
- 影响因子:2.9
- 作者:Kennedy, Helen;Hill, Rosemary Lucy
- 通讯作者:Hill, Rosemary Lucy
Making corpus data visible: visualising text with research intermediaries
- DOI:10.3366/cor.2017.0128
- 发表时间:2017-11-01
- 期刊:
- 影响因子:0.5
- 作者:Allen, William
- 通讯作者:Allen, William
The SAGE Handbook of Online Research Methods
SAGE 在线研究方法手册
- DOI:10.4135/9781473957992.n18
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Kennedy H
- 通讯作者:Kennedy H
The work that visualisation conventions do
- DOI:10.1080/1369118x.2016.1153126
- 发表时间:2016-06-02
- 期刊:
- 影响因子:4.2
- 作者:Kennedy, Helen;Hill, Rosemary Lucy;Allen, William
- 通讯作者:Allen, William
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Helen Kennedy其他文献
Maternal body weight and estimated circulating blood volume: a non-linear approach.
母亲体重和估计循环血量:非线性方法。
- DOI:
10.1016/j.bja.2022.08.011 - 发表时间:
2022 - 期刊:
- 影响因子:9.8
- 作者:
Helen Kennedy;S. Haynes;C. Shelton - 通讯作者:
C. Shelton
Monitoring techniques: neuromuscular blockade and depth of anaesthesia
- DOI:
10.1016/j.mpaic.2020.04.002 - 发表时间:
2020-07-01 - 期刊:
- 影响因子:
- 作者:
Helen Kennedy;Ming Wilson - 通讯作者:
Ming Wilson
A new red-bracted species of Calathea (Marantaceae) from Peru
- DOI:
10.2307/2806394 - 发表时间:
1982-01-01 - 期刊:
- 影响因子:0.700
- 作者:
Helen Kennedy - 通讯作者:
Helen Kennedy
Calathea maasiorum (Marantaceae), a new species from French Guiana and Surinam
- DOI:
10.2307/2806955 - 发表时间:
1995-04-01 - 期刊:
- 影响因子:0.700
- 作者:
Helen Kennedy - 通讯作者:
Helen Kennedy
Understanding 'difficult tracheal intubation' in neonatal anaesthesia. Comment on Br J Anaesth 2021; 126: 1173-81.
了解新生儿麻醉中的“困难气管插管”。
- DOI:
10.1016/j.bja.2021.06.034 - 发表时间:
2021 - 期刊:
- 影响因子:9.8
- 作者:
A. Gardner;D. Eusuf;Helen Kennedy;Bronagh Patterson;Victoria Scott;C. Shelton - 通讯作者:
C. Shelton
Helen Kennedy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Helen Kennedy', 18)}}的其他基金
Open Access Block Award 2024 - University of the West of Scotland
2024 年开放访问区块奖 - 西苏格兰大学
- 批准号:
EP/Z532630/1 - 财政年份:2024
- 资助金额:
$ 11.3万 - 项目类别:
Research Grant
Open Access Block Award 2023 - University of the West of Scotland
2023 年开放访问区块奖 - 西苏格兰大学
- 批准号:
EP/Y530475/1 - 财政年份:2023
- 资助金额:
$ 11.3万 - 项目类别:
Research Grant
The Digital Good Network: exploring equity, sustainability and resilience in people's relationships with and through digital technologies
数字良好网络:通过数字技术探索人们关系中的公平性、可持续性和复原力
- 批准号:
ES/X502352/1 - 财政年份:2022
- 资助金额:
$ 11.3万 - 项目类别:
Research Grant
Open Access Block Award 2022 - University of the West of Scotland
2022 年开放访问区块奖 - 西苏格兰大学
- 批准号:
EP/X527403/1 - 财政年份:2022
- 资助金额:
$ 11.3万 - 项目类别:
Research Grant
What Constitutes 'Good Data' in the Creative Economy? Case studies in media and cultural industries
什么构成创意经济中的“好数据”?
- 批准号:
AH/S012109/1 - 财政年份:2019
- 资助金额:
$ 11.3万 - 项目类别:
Research Grant
XR: CIIRKES / Extraordinary Circus: Creative Immersive Interdisciplinary Knowledge ExchangeS
XR:CIIRKES /非凡马戏团:创意沉浸式跨学科知识交流
- 批准号:
AH/R010234/1 - 财政年份:2018
- 资助金额:
$ 11.3万 - 项目类别:
Research Grant
Seeing Data: are good big data visualisations possible?
查看数据:良好的大数据可视化可能吗?
- 批准号:
AH/L009986/1 - 财政年份:2014
- 资助金额:
$ 11.3万 - 项目类别:
Research Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Big Data- Good Data: Understanding Society by combining survey data and new forms of data
大数据-好数据:结合调查数据和新数据形式了解社会
- 批准号:
2815847 - 财政年份:2021
- 资助金额:
$ 11.3万 - 项目类别:
Studentship
Learning and Discovery in Experimental Environmental Health Science: On the Path from Data to Knowledge
实验环境健康科学的学习和发现:从数据到知识的道路
- 批准号:
10580009 - 财政年份:2021
- 资助金额:
$ 11.3万 - 项目类别:
Developmental Neurotoxicity Zebrafish Assay and Data Collection - task order 1
发育神经毒性斑马鱼测定和数据收集 - 任务顺序 1
- 批准号:
10475421 - 财政年份:2021
- 资助金额:
$ 11.3万 - 项目类别:
Learning and Discovery in Experimental Environmental Health Science: On the Path from Data to Knowledge
实验环境健康科学的学习和发现:从数据到知识的道路
- 批准号:
10396661 - 财政年份:2021
- 资助金额:
$ 11.3万 - 项目类别:
Learning and Discovery in Experimental Environmental Health Science: On the Path from Data to Knowledge
实验环境健康科学的学习和发现:从数据到知识的道路
- 批准号:
10215832 - 财政年份:2021
- 资助金额:
$ 11.3万 - 项目类别:














{{item.name}}会员




