The Congruence Engine: Digital Tools for New Collections-Based Industrial Histories

一致性引擎:基于新馆藏的工业历史的数字工具

基本信息

  • 批准号:
    AH/W003244/1
  • 负责人:
  • 金额:
    $ 374.86万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

The capacity to make strong connections between historical objects and sources lies at the heart of this project as it does in the everyday museum and historical practices that it is designed to support. Curators creating displays combine artefacts, images, audio-visual materials and histories. Family and local historians connect records of ancestors and localities to establish their genealogy or to understand the past of where they live. Academic historians patiently and critically connect a diverse range of archive sources with existing literature to tell new stories about the past. All rely on connecting different fragments of the past as they create the tapestries of narrative that constitute our local and national histories. The Congruence Engine will create the prototype of a digital toolbox for everyone fascinated by the past to connect an unprecedented range of items from the nation's collection to tell the stories about our industrial past that they want to tell. Until now, we have become acclimatised to a world of research where it has only been possible to work with a selection of the potentially relevant historical source material for any historical investigation we want to undertake. And now, in our information society, we expect to go to a search engine and find a record of anything. But so often such searches disappoint, and for two main reasons. First because the tyranny of the free-text search where ranked results lists favour the results of previous searches, and cannot be guaranteed to include the full set of what is relevant to the search. The second reason is that the records of so very many of our heritage collections are thin, inconsistent, or kept in institutional siloes hidden from outside access. This project explicitly works with these collections that are generally represented by weak data. In place of the two-dimensional ranked list of search engines, we aim, with 'The Congruence Engine', to model a world in which users will be able to explore data neighbourhoods (technically 'knowledge graphs') where a great diversity of information about heritage items that are deeply relevant to their investigations will be readily to hand - museum objects, archive documents, pictures, films, buildings, and the records of previous investigations and relevant activity. Building on the successful experimentation of 'Heritage Connector' (the Science Museum's TaNC foundation project), this major project will develop a repertoire of prototype discovery tools to access the industrial and related collections brought into the study from our investigating and collaborating organisations and partners. To achieve this breakthrough in collections accessibility, it will bring together in collaboration a unique combination of skills and interests. Here, digital researchers will work with professional and community historians and curators to address real-world historical investigations of Britain's industrial past. Through 27 months of iterative exploration of three industrial sectors - textiles, energy and communications - the digital researchers will work with the historians and curators, tuning the software to make it responsive to user needs. They will responsively use computational and artificial intelligence techniques - including machine learning and natural language processing (specifically, eg, named entity recognition) and a suite of bespoke entity-linking routines - to create and refine datasets, provide routes between records and digital objects such as scans and photographs, and create the tools by which the participants - who will not need to be digital experts - will be able to enjoy and employ the sources that are opened to them in the construction of narratives. These narratives will be expressed in the project's mobile digital exhibition space, on its website and a variety of conventional popular and academic outputs. Software will be made available via GitHub; we will produce 'how to' guides.
在历史物品和资源之间建立强大联系的能力是这个项目的核心,因为它在日常博物馆和它旨在支持的历史实践中也是如此。策展人创造的显示联合收割机结合文物,图像,视听材料和历史。家庭和地方历史学家将祖先和地方的记录联系起来,以建立他们的家谱或了解他们居住地的过去。学术历史学家耐心地、批判性地将各种档案来源与现有文献联系起来,讲述关于过去的新故事。所有这些都依赖于连接过去的不同片段,因为它们创造了构成我们地方和国家历史的叙事挂毯。Congruence Engine将为每个对过去着迷的人创建一个数字工具箱的原型,将国家收藏中前所未有的物品连接起来,讲述他们想要讲述的关于我们工业历史的故事。到目前为止,我们已经适应了一个研究世界,在这个世界里,我们只能选择一些潜在的相关历史源材料来进行我们想要进行的任何历史调查。现在,在我们的信息社会,我们希望去搜索引擎,找到任何记录。但这样的搜索往往令人失望,主要有两个原因。首先是因为自由文本搜索的暴政,其中排名结果列表有利于以前搜索的结果,并且不能保证包括与搜索相关的全部内容。第二个原因是,我们的许多遗产收藏的记录都很薄,不一致,或者保存在机构的筒仓中,不让外界接触。这个项目明确地处理这些通常由弱数据表示的集合。我们的目标是用“一致性引擎”来代替搜索引擎的二维排名列表,来模拟一个用户能够探索数据邻域的世界。(技术上的“知识图谱”),其中与他们的调查密切相关的遗产项目的各种信息将很容易掌握-博物馆物品,档案文件,图片,电影,建筑物,以及以前的调查和相关活动的记录。在“Heritage Connector”(科学馆TaNC基金会项目)成功实验的基础上,这个重大项目将开发一套原型发现工具,以访问我们的调查和合作组织和合作伙伴带入研究的工业和相关收藏。为了实现这一突破,在收藏的可访问性,它将汇集在协作的技能和兴趣的独特组合。在这里,数字研究人员将与专业和社区历史学家和策展人合作,解决英国工业历史的现实世界历史调查。通过27个月对纺织、能源和通信三个工业领域的反复探索,数字研究人员将与历史学家和策展人合作,调整软件,使其能够响应用户需求。他们将相应地使用计算和人工智能技术-包括机器学习和自然语言处理(特别是,例如,命名实体识别)和一套定制的实体链接例程-创建和完善数据集,提供记录和数字对象(如扫描和照片)之间的路由,并创造工具,使参与者--他们不需要是数字专家--能够在叙事的构建中享受和利用向他们开放的资源。这些叙述将在该项目的移动的数字展览空间、其网站和各种传统的流行和学术产出中表达。软件将通过GitHub提供;我们将制作“如何”指南。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
History of communications and the Congruence Engine: early thoughts and possibilities
通信史和同余引擎:早期思想和可能性
History of textiles and the Congruence Engine
纺织品的历史和同余引擎
The future: reflections on emerging machine-learning methods for digital heritage
未来:对数字遗产新兴机器学习方法的思考
Connecting with industrial heritage collections using video production methods: Greg Kotovs and the can-gill machine
使用视频制作方法连接工业遗产收藏:Greg Kotovs 和罐刺机
Congruence Engine in action – an emergent editorial
运行中的一致性引擎
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy Boon其他文献

Timothy Boon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy Boon', 18)}}的其他基金

Open Access Block Award 2024 - Science Museum Group
2024 年开放访问区块奖 - 科学博物馆集团
  • 批准号:
    EP/Z532526/1
  • 财政年份:
    2024
  • 资助金额:
    $ 374.86万
  • 项目类别:
    Research Grant
Open Access Block Award 2023 - Science Museum Group
2023 年开放访问区块奖 - 科学博物馆集团
  • 批准号:
    EP/Y530104/1
  • 财政年份:
    2023
  • 资助金额:
    $ 374.86万
  • 项目类别:
    Research Grant
Open Access Block Award 2022 - Science Museum Group
2022 年开放访问区块奖 - 科学博物馆集团
  • 批准号:
    EP/X527294/1
  • 财政年份:
    2022
  • 资助金额:
    $ 374.86万
  • 项目类别:
    Research Grant
The Public History of Science, Technology, Engineering and Medicine: Prospects and Issues
科学、技术、工程和医学的公共史:前景和问题
  • 批准号:
    AH/J012319/1
  • 财政年份:
    2012
  • 资助金额:
    $ 374.86万
  • 项目类别:
    Research Grant
An initial intermedia study of science on television and in museums
电视和博物馆中科学的初步媒介研究
  • 批准号:
    AH/J01141X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 374.86万
  • 项目类别:
    Research Grant

相似国自然基金

基于Google Earth Engine云平台的遥感图像去云研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

An innovative digital health recommendation engine, harnessing AI and predictive modelling to offer personalised health interventions that could reduce chronic health risks by 80%
An%20innovative%20digital%20health%20recommendation%20engine、%20harnessing%20AI%20and%20predictive%20modelling%20to%20offer%20personalized%20health%20interventions%20that%20could%20reduce%20chronic%20health%20risks%20by%2080%
  • 批准号:
    10085133
  • 财政年份:
    2023
  • 资助金额:
    $ 374.86万
  • 项目类别:
    Collaborative R&D
Easy Digital to Search Engine Optimisation
轻松数字化搜索引擎优化
  • 批准号:
    10070414
  • 财政年份:
    2023
  • 资助金额:
    $ 374.86万
  • 项目类别:
    Collaborative R&D
An interdisciplinary Digital Twin Engine for science
跨学科科学数字孪生引擎
  • 批准号:
    10041192
  • 财政年份:
    2022
  • 资助金额:
    $ 374.86万
  • 项目类别:
    EU-Funded
The Widget - An app that integrates digital assets from Unreal Engine into a physical space
The Widget - 一款将虚幻引擎中的数字资产集成到物理空间中的应用程序
  • 批准号:
    10023954
  • 财政年份:
    2022
  • 资助金额:
    $ 374.86万
  • 项目类别:
    Collaborative R&D
Empowering underrepresented youth to gain digital technology skills through STEAM Engine Program
通过 STEAM Engine 计划帮助代表性不足的年轻人获得数字技术技能
  • 批准号:
    577496-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 374.86万
  • 项目类别:
    PromoScience
LifeBio-ALZ: AI driven digital biomarker engine leveraging natural conversation to widely scale accessibility for early detection and assessment of Alzheimers disease progression
LifeBio-ALZ:人工智能驱动的数字生物标记引擎,利用自然对话来广泛扩展可访问性,以早期检测和评估阿尔茨海默病的进展
  • 批准号:
    10381308
  • 财政年份:
    2021
  • 资助金额:
    $ 374.86万
  • 项目类别:
A Natural Language Based Data Retrieval Engine for Automated Digital Data Extraction for Civil Infrastructure Projects
基于自然语言的数据检索引擎,用于土木基础设施项目的自动数字数据提取
  • 批准号:
    1854400
  • 财政年份:
    2018
  • 资助金额:
    $ 374.86万
  • 项目类别:
    Standard Grant
A Natural Language Based Data Retrieval Engine for Automated Digital Data Extraction for Civil Infrastructure Projects
基于自然语言的数据检索引擎,用于土木基础设施项目的自动数字数据提取
  • 批准号:
    1635309
  • 财政年份:
    2016
  • 资助金额:
    $ 374.86万
  • 项目类别:
    Standard Grant
Delta2 Digital Print Engine
Delta2数字打印引擎
  • 批准号:
    100782
  • 财政年份:
    2009
  • 资助金额:
    $ 374.86万
  • 项目类别:
    Collaborative R&D
Digital predistortion engine for wideband transmiters linearization
用于宽带发射机线性化的数字预失真引擎
  • 批准号:
    382646-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 374.86万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了