Fast and Angström-resolution AFM to visualise conformational change in biomolecules

快速且埃级分辨率的 AFM 可可视化生物分子的构象变化

基本信息

  • 批准号:
    BB/G011729/1
  • 负责人:
  • 金额:
    $ 42.1万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

Atomic Force Microscopy (AFM) basically acts as a miniature blind man's stick ('cantilever') following the contours of a sample surface, and line by line reconstructing a three-dimensional representation of the surface topography. This line-by-line scanning is a fundamental difference from other, more common microscopy techniques and a main reason why it generally takes minutes to complete a single image. AFM is unique in combining sub-molecular resolution imaging with the ability to operate in liquids. For high-resolution imaging of biological samples, molecules are generally adsorbed on a hard surface, which is the only compromise compared to physiological conditions. Membrane proteins are samples of particular interest, since they represent more than 50% of modern drug targets and therefore are of major pharmaceutical importance. Their function as molecular nanomachines is determined by Angstrom-sized structural ('conformational') changes occurring at millisecond time scales. For applications in future healthcare and for basic scientific understanding, the crucial question is how molecular structure and changes in this structure relate to the biological function of membrane proteins. This project combines high-resolution AFM techniques (that have yielded atomic resolution!) with fast scanning, to obtain images of membrane proteins with Angstrom spatial and millisecond temporal resolution. This will enable us to visualise conformational changes in real time and observe biomolecules at work. This will be demonstrated on bacteriorhodopsin, a light-driven molecular machine that pumps protons through the cell membrane.
原子力显微镜(AFM)基本上就是一个跟随样品表面轮廓的微型盲人手杖(悬臂),逐线重建表面形貌的三维表示。这种逐行扫描是与其他更常见的显微镜技术的根本区别,也是通常需要几分钟才能完成一张图像的主要原因。原子力显微镜在结合亚分子分辨率成像和在液体中操作的能力方面是独一无二的。对于生物样品的高分辨率成像,分子通常吸附在坚硬的表面上,这是与生理条件相比唯一的折衷。膜蛋白是特别令人感兴趣的样品,因为它们代表了现代药物靶标的50%以上,因此具有重大的药学意义。它们作为分子纳米机器的功能是由毫秒时间尺度上发生的埃大小的结构(构象)变化决定的。对于在未来的医疗保健中的应用和对基础科学的理解,关键的问题是分子结构和这种结构的变化如何与膜蛋白的生物学功能相关。这个项目结合了高分辨率的AFM技术(已经产生了原子分辨率!)通过快速扫描,获得Angstrom空间分辨率和毫秒时间分辨率的膜蛋白图像。这将使我们能够实时可视化构象变化,并观察工作中的生物分子。这将在细菌视紫红质上得到证明,这是一种光驱动的分子机器,可以将质子泵过细胞膜。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanoscale stiffness topography reveals structure and mechanics of the transport barrier in intact nuclear pore complexes.
  • DOI:
    10.1038/nnano.2014.262
  • 发表时间:
    2015-01
  • 期刊:
  • 影响因子:
    38.3
  • 作者:
  • 通讯作者:
Resolving the structure of a model hydrophobic surface: DODAB monolayers on mica
  • DOI:
    10.1039/c2ra20108a
  • 发表时间:
    2012-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Gosvami, Nitya Nand;Parsons, Edward;Perkin, Susan
  • 通讯作者:
    Perkin, Susan
Improved Kelvin probe force microscopy for imaging individual DNA molecules on insulating surfaces
  • DOI:
    10.1063/1.3512867
  • 发表时间:
    2010-11-15
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Leung, Carl;Maradan, Dario;Hoogenboom, Bart W.
  • 通讯作者:
    Hoogenboom, Bart W.
Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol-dependent cytolysin.
  • DOI:
    10.7554/elife.04247
  • 发表时间:
    2014-12-02
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Leung C;Dudkina NV;Lukoyanova N;Hodel AW;Farabella I;Pandurangan AP;Jahan N;Pires Damaso M;Osmanović D;Reboul CF;Dunstone MA;Andrew PW;Lonnen R;Topf M;Saibil HR;Hoogenboom BW
  • 通讯作者:
    Hoogenboom BW
Enhanced quality factors and force sensitivity by attaching magnetic beads to cantilevers for atomic force microscopy in liquid
  • DOI:
    10.1063/1.4768713
  • 发表时间:
    2012-11
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    S. Hoof;N. Gosvami;B. Hoogenboom
  • 通讯作者:
    S. Hoof;N. Gosvami;B. Hoogenboom
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bart Hoogenboom其他文献

Visualising Self-Assembly of Pore Forming Proteins on their Target Membranes
  • DOI:
    10.1016/j.bpj.2018.11.059
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Bart Hoogenboom
  • 通讯作者:
    Bart Hoogenboom

Bart Hoogenboom的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bart Hoogenboom', 18)}}的其他基金

Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X00760X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.1万
  • 项目类别:
    Research Grant
Disruption And Resistance In Bacterial Cell Envelopes Challenged By Polymyxins
多粘菌素挑战细菌细胞包膜的破坏和耐药性
  • 批准号:
    BB/X001547/1
  • 财政年份:
    2023
  • 资助金额:
    $ 42.1万
  • 项目类别:
    Research Grant
Turnkey video-rate atomic force microscopy for nanometre resolution imaging of functional biomolecules and cellular surfaces
用于功能生物分子和细胞表面纳米分辨率成像的交钥匙视频原子力显微镜
  • 批准号:
    BB/W019345/1
  • 财政年份:
    2022
  • 资助金额:
    $ 42.1万
  • 项目类别:
    Research Grant
The Role of Physical Membrane Properties in Tumour Cell Resistance to Perforin
物理膜特性在肿瘤细胞对穿孔素的抵抗中的作用
  • 批准号:
    MR/V009702/1
  • 财政年份:
    2021
  • 资助金额:
    $ 42.1万
  • 项目类别:
    Research Grant
Benchtop, turnkey super-resolution microscopy for biology, biophysics and biotechnology
适用于生物学、生物物理学和生物技术的台式交钥匙超分辨率显微镜
  • 批准号:
    BB/T01749X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 42.1万
  • 项目类别:
    Research Grant
Dynamics of bacterial killing by the membrane attack complex
膜攻击复合物杀灭细菌的动力学
  • 批准号:
    MR/R000328/1
  • 财政年份:
    2018
  • 资助金额:
    $ 42.1万
  • 项目类别:
    Research Grant
Integrated microscopy approach to protein assembly on and in membranes
膜上和膜内蛋白质组装的集成显微镜方法
  • 批准号:
    BB/N015487/1
  • 财政年份:
    2016
  • 资助金额:
    $ 42.1万
  • 项目类别:
    Research Grant
Dynamics and pathways of assembly in membrane pore formation
膜孔形成中的组装动力学和途径
  • 批准号:
    BB/J006254/1
  • 财政年份:
    2012
  • 资助金额:
    $ 42.1万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了