Benchtop, turnkey super-resolution microscopy for biology, biophysics and biotechnology

适用于生物学、生物物理学和生物技术的台式交钥匙超分辨率显微镜

基本信息

  • 批准号:
    BB/T01749X/1
  • 负责人:
  • 金额:
    $ 25.91万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Much of modern biology aims to understand processes of life, health and disease in terms of the molecular-scale building blocks that make up our body and living organisms in general. A major obstacle to such research is that it is hard to "see" these molecular building blocks, for the simple reason that they are so small. Major breakthroughs in this direction have been the use of X-rays and of electrons to probe living systems, but these methods require the samples under investigation to be fixed and/or frozen and put in a vacuum chamber. To see these molecular building blocks at work, we need to image them in salty water, and - ideally - in or on living cells. In part, this can be achieved by attaching fluorescent labels to the molecules of interest, precisely locating them and/or tracking their behaviour. Thanks to a set of methods collectively named "super-resolution microscopy", there has been major progress (awarded a Nobel Prize in 2014) in the accuracy by which this can be done. Yet such methods are not trivial to use: the operation of such microscopes remains complex and this complexity is a barrier to its wider use in various fields of research.We aim to purchase a super-resolution microscope that has been developed to address this barrier. It does not require any particularly stable environment nor involves any risk of user exposure to high-power laser (it is in the same risk class as low-power laser pointers), and can operate on a normal bench (or kitchen table, for that matter). Moreover, it includes a way ('microfluidics') to handle small volumes of biological samples in a more convenient matter, further facilitating experiments.We will make this microscope widely accessible to academic and - where appropriate - also commercial users. To start with, we have identified various research projects that will benefit from this microscope, to address questions including how viruses can infect cells, how our DNA is packed and when needed unpacked in the nucleus, and how to make better reagents to kill bacteria and/or cancer cells.
现代生物学的大部分目标是根据构成我们身体和生物体的分子尺度构建块来理解生命、健康和疾病的过程。这种研究的一个主要障碍是很难“看到”这些分子组成部分,原因很简单,它们太小了。在这个方向上的重大突破是使用x射线和电子来探测生命系统,但这些方法需要将被调查的样品固定和/或冷冻并放入真空室。为了观察这些分子的工作原理,我们需要在盐水中给它们拍照,最好是在活细胞内或活细胞上。在某种程度上,这可以通过将荧光标记附加到感兴趣的分子上,精确定位它们和/或跟踪它们的行为来实现。多亏了一组统称为“超分辨率显微镜”的方法,在实现这一目标的准确性方面取得了重大进展(2014年获得了诺贝尔奖)。然而,这些方法使用起来并不简单:这种显微镜的操作仍然很复杂,这种复杂性阻碍了它在各个研究领域的广泛应用。我们的目标是购买一种超分辨率显微镜,这种显微镜已经开发出来,可以解决这个问题。它不需要任何特别稳定的环境,也不涉及任何用户暴露于高功率激光的风险(它与低功率激光笔处于相同的风险级别),并且可以在正常的工作台(或厨房桌子,就此而言)上操作。此外,它还包括一种更方便地处理小体积生物样品的方法(“微流体”),进一步促进了实验。我们将使这种显微镜广泛地提供给学术用户,并在适当的情况下提供给商业用户。首先,我们已经确定了各种研究项目,这些项目将受益于这种显微镜,以解决问题,包括病毒如何感染细胞,我们的DNA如何包装以及何时需要在细胞核中解开包装,以及如何制造更好的试剂来杀死细菌和/或癌细胞。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bart Hoogenboom其他文献

Visualising Self-Assembly of Pore Forming Proteins on their Target Membranes
  • DOI:
    10.1016/j.bpj.2018.11.059
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Bart Hoogenboom
  • 通讯作者:
    Bart Hoogenboom

Bart Hoogenboom的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bart Hoogenboom', 18)}}的其他基金

Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X00760X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.91万
  • 项目类别:
    Research Grant
Disruption And Resistance In Bacterial Cell Envelopes Challenged By Polymyxins
多粘菌素挑战细菌细胞包膜的破坏和耐药性
  • 批准号:
    BB/X001547/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.91万
  • 项目类别:
    Research Grant
Turnkey video-rate atomic force microscopy for nanometre resolution imaging of functional biomolecules and cellular surfaces
用于功能生物分子和细胞表面纳米分辨率成像的交钥匙视频原子力显微镜
  • 批准号:
    BB/W019345/1
  • 财政年份:
    2022
  • 资助金额:
    $ 25.91万
  • 项目类别:
    Research Grant
The Role of Physical Membrane Properties in Tumour Cell Resistance to Perforin
物理膜特性在肿瘤细胞对穿孔素的抵抗中的作用
  • 批准号:
    MR/V009702/1
  • 财政年份:
    2021
  • 资助金额:
    $ 25.91万
  • 项目类别:
    Research Grant
Dynamics of bacterial killing by the membrane attack complex
膜攻击复合物杀灭细菌的动力学
  • 批准号:
    MR/R000328/1
  • 财政年份:
    2018
  • 资助金额:
    $ 25.91万
  • 项目类别:
    Research Grant
Integrated microscopy approach to protein assembly on and in membranes
膜上和膜内蛋白质组装的集成显微镜方法
  • 批准号:
    BB/N015487/1
  • 财政年份:
    2016
  • 资助金额:
    $ 25.91万
  • 项目类别:
    Research Grant
Dynamics and pathways of assembly in membrane pore formation
膜孔形成中的组装动力学和途径
  • 批准号:
    BB/J006254/1
  • 财政年份:
    2012
  • 资助金额:
    $ 25.91万
  • 项目类别:
    Research Grant
Fast and Angström-resolution AFM to visualise conformational change in biomolecules
快速且埃级分辨率的 AFM 可可视化生物分子的构象变化
  • 批准号:
    BB/G011729/1
  • 财政年份:
    2009
  • 资助金额:
    $ 25.91万
  • 项目类别:
    Research Grant

相似海外基金

TICTAC: Turnkey, Inexpensive and Compact Ti:sapphire Astrocomb Concept
TICTAC:交钥匙、廉价且紧凑的钛蓝宝石 Astrocomb 概念
  • 批准号:
    ST/X004503/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.91万
  • 项目类别:
    Research Grant
GOALI: Turnkey Model Predictive Control: automated design, model identification, tuning, and monitoring
GOALI:交钥匙模型预测控制:自动化设计、模型识别、调整和监控
  • 批准号:
    2138985
  • 财政年份:
    2022
  • 资助金额:
    $ 25.91万
  • 项目类别:
    Standard Grant
Turnkey video-rate atomic force microscopy for nanometre resolution imaging of functional biomolecules and cellular surfaces
用于功能生物分子和细胞表面纳米分辨率成像的交钥匙视频原子力显微镜
  • 批准号:
    BB/W019345/1
  • 财政年份:
    2022
  • 资助金额:
    $ 25.91万
  • 项目类别:
    Research Grant
CleanCell-V2: A turnkey plastic packaging cleaning hub solution, which integrates into existing supply-chains and redefines what is reusable at scale.
CleanCell-V2:交钥匙塑料包装清洁中心解决方案,可集成到现有供应链中并重新定义可大规模重复使用的内容。
  • 批准号:
    10021179
  • 财政年份:
    2022
  • 资助金额:
    $ 25.91万
  • 项目类别:
    Collaborative R&D
Smart Green Grow - Design and development of an advanced, energy-efficient, carbonneutral, turnkey vertical farm for onsite use at retailers, schools and end-users
智能绿色种植——设计和开发先进、节能、碳中和、交钥匙垂直农场,供零售商、学校和最终用户现场使用
  • 批准号:
    10000012
  • 财政年份:
    2021
  • 资助金额:
    $ 25.91万
  • 项目类别:
    Collaborative R&D
Request for a Brainsight Turnkey Neuro-Navigation System For NHP Research
请求用于 NHP 研究的 Brainsight 交钥匙神经导航系统
  • 批准号:
    10282578
  • 财政年份:
    2021
  • 资助金额:
    $ 25.91万
  • 项目类别:
Creating the world’s first turnkey modular black soldier fly (BSF) breeding system for insect producers worldwide
为全球昆虫生产者创建世界上第一个交钥匙模块化黑水虻 (BSF) 育种系统
  • 批准号:
    105746
  • 财政年份:
    2019
  • 资助金额:
    $ 25.91万
  • 项目类别:
    Study
Collaborative Research: Development of a turnkey SQUID microscope platform for paleomagnetism and installation in a National Multi-User Facility
合作研究:开发用于古地磁学的交钥匙 SQUID 显微镜平台并安装在国家多用户设施中
  • 批准号:
    1905733
  • 财政年份:
    2019
  • 资助金额:
    $ 25.91万
  • 项目类别:
    Standard Grant
A turnkey research platform to accelerate clinical translation of targeted immune-modulation enhanced therapies
加速靶向免疫调节增强疗法临床转化的交钥匙研究平台
  • 批准号:
    10325591
  • 财政年份:
    2019
  • 资助金额:
    $ 25.91万
  • 项目类别:
Thermoacoustic Range Verification During Delivery of a Clinical Plan by a Synchrocyclotron: transition from research prototype to turnkey clinical device
同步回旋加速器交付临床计划期间的热声范围验证:从研究原型到交钥匙临床设备的过渡
  • 批准号:
    10600975
  • 财政年份:
    2019
  • 资助金额:
    $ 25.91万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了