Dynamics and pathways of assembly in membrane pore formation

膜孔形成中的组装动力学和途径

基本信息

  • 批准号:
    BB/J006254/1
  • 负责人:
  • 金额:
    $ 33.64万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Pore-forming proteins are crucial armaments in the continuous battle between living organisms and the pathogens that threaten their fitness and survival. These proteins act on cells, which are the micrometre-scaled, basic units of all forms of life. Cells are separated and protected from their environment by a thin membrane. Pathogens such as bacteria can release pore-forming proteins ("toxins") that drill holes in the membranes of healthy cells in the host organism, to release nutrients for the bacteria, to invade these cells and/or kill them. Patients affected by bacterial pneumonia, for example, suffer from the devastating effects of such a toxin, pneumolysin, on lung tissue. The immune system, however, uses a similar mechanism to kill germs and infected or cancerous cells, thus preventing them from doing further damage to the organism. It secretes related, but somewhat different pore-forming proteins to perforate the membranes of such unwanted invaders.To perform these tasks, pore-forming proteins have developed sophisticated drilling mechanism. These proteins can convert from a soluble form in the aqueous, cellular environment into a very different form, in which 20-50 protein molecules assemble into a ring-shaped pore bound to the membrane. We can look at these forms with X-rays or electrons to deduce their three-dimensional structures. Thanks to such experiments, we now have a reasonably clear picture of the soluble proteins and their pore structure in the membrane. For some pore-forming proteins, scientists have even identified the changes inside the proteins which make this transition possible.However, if we wish to design drugs that prevent such pores from being formed, as in the example of bacterial pneumonia indicated above, it would be useful to know more about the steps in their formation. It is exactly this pore assembly that is still largely enigmatic. In this project, we will try to answer some specific questions about membrane pore formation. We would like to know how the proteins assemble on the membrane. Do they assemble one by one, or do they first form larger units that subsequently assemble in a pore? Do the proteins first need to assemble on the membrane, or can they dock in the membrane and assemble in pores afterwards? And at what point in this process will the membrane that is surrounded by the assembled protein be extruded to create a hole?To investigate the dynamics of this process, we rely on a technique called atomic force microscopy. Atomic force microscopy is the small-scale equivalent of reading Braille: With a tiny artificial finger, we feel the pore-forming proteins while they assemble on the membrane. Whereas X-ray crystallography and electron microscopy are limited to static samples, atomic force microscopy can probe active proteins while they are at work. We will thus apply atomic force microscopy to the membranes that are being exposed to attack by pore-forming proteins. Meanwhile, we will benefit from the more detailed views provided by electron microscopy to identify intermediate assemblies of pore-forming proteins, that are trapped by chemical bonds or by lowering the temperature. Electron microscopy will thus provide highly detailed pictures of pore forming proteins in different states of assembly and atomic force microscopy will enable us to see how the proteins transit between these different states.
孔形成蛋白是生物体与威胁其健康和生存的病原体之间持续战斗的关键武器。这些蛋白质作用于细胞,细胞是所有生命形式的微米尺度的基本单位。细胞被一层薄膜隔开并与环境隔离。病原体如细菌可以释放成孔蛋白(“毒素”),其在宿主生物体中的健康细胞的膜中钻孔,以释放细菌的营养物质,侵入这些细胞和/或杀死它们。例如,感染细菌性肺炎的患者遭受这种毒素肺炎球菌溶血素对肺组织的破坏性影响。然而,免疫系统使用类似的机制来杀死细菌和感染或癌细胞,从而防止它们对生物体造成进一步的损害。它分泌相关的,但有些不同的孔形成蛋白来覆盖这些不想要的入侵者的膜。为了执行这些任务,孔形成蛋白已经发展了复杂的钻孔机制。这些蛋白质可以从水溶性形式转化为一种非常不同的形式,其中20-50个蛋白质分子组装成一个环形孔结合到膜上。我们可以用X射线或电子来观察这些形式,以推断它们的三维结构。由于这些实验,我们现在对膜中的可溶性蛋白质及其孔结构有了相当清晰的了解。对于某些形成气孔的蛋白质,科学家们甚至已经确定了使这种转变成为可能的蛋白质内部的变化。然而,如果我们希望设计出阻止这种气孔形成的药物,就像上面提到的细菌性肺炎的例子一样,了解更多关于它们形成的步骤将是有用的。正是这种孔隙组合在很大程度上仍然是个谜。在这个项目中,我们将试图回答一些关于膜孔形成的具体问题。我们想知道蛋白质是如何在膜上组装的。它们是一个接一个地组装,还是先形成更大的单元,然后再组装成一个孔?蛋白质是先在膜上组装,还是先在膜上停靠,然后在孔中组装?在这个过程中,被组装好的蛋白质包围的膜会在什么时候被挤出,形成一个洞?为了研究这个过程的动力学,我们依靠一种叫做原子力显微镜的技术。原子力显微镜相当于小规模的阅读盲文:用一个微小的人造手指,我们感觉到孔形成蛋白质,而他们组装在膜上。虽然X射线晶体学和电子显微镜仅限于静态样品,但原子力显微镜可以探测工作中的活性蛋白质。因此,我们将应用原子力显微镜的膜,是暴露在攻击的孔形成蛋白质。与此同时,我们将受益于电子显微镜提供的更详细的视图,以识别由化学键或降低温度捕获的成孔蛋白质的中间组件。因此,电子显微镜将提供不同组装状态下的成孔蛋白质的高度详细的图像,原子力显微镜将使我们能够看到蛋白质如何在这些不同状态之间转换。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Antimicrobial peptide capsids of de novo design.
  • DOI:
    10.1038/s41467-017-02475-3
  • 发表时间:
    2017-12-22
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    De Santis E;Alkassem H;Lamarre B;Faruqui N;Bella A;Noble JE;Micale N;Ray S;Burns JR;Yon AR;Hoogenboom BW;Ryadnov MG
  • 通讯作者:
    Ryadnov MG
Lipid specificity of the immune effector perforin.
  • DOI:
    10.1039/d0fd00043d
  • 发表时间:
    2021-12-24
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Hodel AW;Rudd-Schmidt JA;Trapani JA;Voskoboinik I;Hoogenboom BW
  • 通讯作者:
    Hoogenboom BW
Enhanced quality factors and force sensitivity by attaching magnetic beads to cantilevers for atomic force microscopy in liquid
  • DOI:
    10.1063/1.4768713
  • 发表时间:
    2012-11
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    S. Hoof;N. Gosvami;B. Hoogenboom
  • 通讯作者:
    S. Hoof;N. Gosvami;B. Hoogenboom
Structurally plastic peptide capsules for synthetic antimicrobial viruses.
  • DOI:
    10.1039/c5sc03260a
  • 发表时间:
    2016-03-01
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Castelletto V;de Santis E;Alkassem H;Lamarre B;Noble JE;Ray S;Bella A;Burns JR;Hoogenboom BW;Ryadnov MG
  • 通讯作者:
    Ryadnov MG
AFM imaging of pore forming proteins.
成孔蛋白的 AFM 成像。
  • DOI:
    10.1016/bs.mie.2021.01.002
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hodel AW
  • 通讯作者:
    Hodel AW
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bart Hoogenboom其他文献

Visualising Self-Assembly of Pore Forming Proteins on their Target Membranes
  • DOI:
    10.1016/j.bpj.2018.11.059
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Bart Hoogenboom
  • 通讯作者:
    Bart Hoogenboom

Bart Hoogenboom的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bart Hoogenboom', 18)}}的其他基金

Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X00760X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.64万
  • 项目类别:
    Research Grant
Disruption And Resistance In Bacterial Cell Envelopes Challenged By Polymyxins
多粘菌素挑战细菌细胞包膜的破坏和耐药性
  • 批准号:
    BB/X001547/1
  • 财政年份:
    2023
  • 资助金额:
    $ 33.64万
  • 项目类别:
    Research Grant
Turnkey video-rate atomic force microscopy for nanometre resolution imaging of functional biomolecules and cellular surfaces
用于功能生物分子和细胞表面纳米分辨率成像的交钥匙视频原子力显微镜
  • 批准号:
    BB/W019345/1
  • 财政年份:
    2022
  • 资助金额:
    $ 33.64万
  • 项目类别:
    Research Grant
The Role of Physical Membrane Properties in Tumour Cell Resistance to Perforin
物理膜特性在肿瘤细胞对穿孔素的抵抗中的作用
  • 批准号:
    MR/V009702/1
  • 财政年份:
    2021
  • 资助金额:
    $ 33.64万
  • 项目类别:
    Research Grant
Benchtop, turnkey super-resolution microscopy for biology, biophysics and biotechnology
适用于生物学、生物物理学和生物技术的台式交钥匙超分辨率显微镜
  • 批准号:
    BB/T01749X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 33.64万
  • 项目类别:
    Research Grant
Dynamics of bacterial killing by the membrane attack complex
膜攻击复合物杀灭细菌的动力学
  • 批准号:
    MR/R000328/1
  • 财政年份:
    2018
  • 资助金额:
    $ 33.64万
  • 项目类别:
    Research Grant
Integrated microscopy approach to protein assembly on and in membranes
膜上和膜内蛋白质组装的集成显微镜方法
  • 批准号:
    BB/N015487/1
  • 财政年份:
    2016
  • 资助金额:
    $ 33.64万
  • 项目类别:
    Research Grant
Fast and Angström-resolution AFM to visualise conformational change in biomolecules
快速且埃级分辨率的 AFM 可可视化生物分子的构象变化
  • 批准号:
    BB/G011729/1
  • 财政年份:
    2009
  • 资助金额:
    $ 33.64万
  • 项目类别:
    Research Grant

相似国自然基金

4-半乳糖基转移酶调控肝内胆管癌发生的机制研究
  • 批准号:
    2024JJ5284
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
StPSR1基因调控马铃薯块茎发育的机制初探
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
水稻条斑病细菌hrp调控系统对致病性效应分子调控的分子机理
  • 批准号:
    30370926
  • 批准年份:
    2003
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

High throughput screening and drug discovery for antagonists of the Ebola VP40 protein assembly
埃博拉 VP40 蛋白组装拮抗剂的高通量筛选和药物发现
  • 批准号:
    10760573
  • 财政年份:
    2023
  • 资助金额:
    $ 33.64万
  • 项目类别:
Role of spontaneous activity towards the assembly and function of neocortical circuits
自发活动对新皮质回路的组装和功能的作用
  • 批准号:
    10737253
  • 财政年份:
    2023
  • 资助金额:
    $ 33.64万
  • 项目类别:
Cortical assembly formation through excitatory/inhibitory circuit plasticity
通过兴奋/抑制回路可塑性形成皮质组件
  • 批准号:
    10729689
  • 财政年份:
    2023
  • 资助金额:
    $ 33.64万
  • 项目类别:
RAG-mediated DNA Damage Responses in Immune Development and Function
RAG 介导的免疫发育和功能中的 DNA 损伤反应
  • 批准号:
    10566822
  • 财政年份:
    2022
  • 资助金额:
    $ 33.64万
  • 项目类别:
CAREER: Stimuli-Responsive Self-Assembly of Supramolecular Block Copolymers: Hierarchical Structures and Kinetic Pathways
职业:超分子嵌段共聚物的刺激响应自组装:层次结构和动力学途径
  • 批准号:
    2144997
  • 财政年份:
    2022
  • 资助金额:
    $ 33.64万
  • 项目类别:
    Continuing Grant
Functional characterization of the enteroviral degradome
肠道病毒降解组的功能表征
  • 批准号:
    10503958
  • 财政年份:
    2022
  • 资助金额:
    $ 33.64万
  • 项目类别:
Cellular pathways of filopodia assembly
丝状伪足组装的细胞途径
  • 批准号:
    575111-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 33.64万
  • 项目类别:
    University Undergraduate Student Research Awards
Functional characterization of the enteroviral degradome
肠道病毒降解组的功能表征
  • 批准号:
    10661758
  • 财政年份:
    2022
  • 资助金额:
    $ 33.64万
  • 项目类别:
Coordination and propagation of cell fate choice in neural circuit assembly
神经回路组装中细胞命运选择的协调和传播
  • 批准号:
    10418639
  • 财政年份:
    2021
  • 资助金额:
    $ 33.64万
  • 项目类别:
Coordination and propagation of cell fate choice in neural circuit assembly
神经回路组装中细胞命运选择的协调和传播
  • 批准号:
    10657590
  • 财政年份:
    2021
  • 资助金额:
    $ 33.64万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了