Construction of a novel Digital Scanning Lightsheet Microscope and its application in measuring 3D cell behaviour and movement in embryos

新型数字扫描光片显微镜的构建及其在测量胚胎 3D 细胞行为和运动中的应用

基本信息

  • 批准号:
    BB/G015082/1
  • 负责人:
  • 金额:
    $ 80.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

Understanding embryonic development is one of the big challenges of Life Science Research The first stage in the embryonic development of all higher organisms is the formation of the zygote from the fusion of a sperm with an egg cell, which is typically followed by a series of rapid cell divisions in which many cells are generated. Due to asymmetries present in the cytoplasm of the egg, or external asymmetries provided by the mother, different cells initiate distinct gene expression programs, which allow the cells to proliferate, undergo programmed cell death, differentiate and cell move. For proper development to occur these processes have to be coordinated precisely in 3 dimensional space and time, which is achieved by extensive cell-cell communication. Cell-cell communication can involve signaling through direct cell-cell contacts (short-range) or through secretion of signaling molecules that can diffuse in the space in between the cells and travel a relatively long distance. There are only a limited number of forms and shapes that can be generated by these processes and in many cases cells will need to move from the place where they produced to the site where they are required. This is particularly important in the process of gastrulation and during the formation and wiring of the nervous system. Gastrulation is a critical stage in embryogenesis where the main body plan of the embryo is laid down and the axes of symmetry emerge. It involves large-scale long-range cell movements during which cells of the three germlayers (ectoderm, mesoderm, and endoderm) take up the correct topological positions in the embryo. The endoderm is located innermost in the embryo and adult and endoderm cells form the lining of the digestive tract and associated glands (liver pancreas etc). The endoderm is surrounded by the mesoderm that will give rise to the muscles and the skeleton. The mesoderm is covered by the outmost layer, the ectoderm that will form the epidermis and the nervous system. Improper cell movements during gastrulation results in severe cases in abortive development and in less severe cases form the basis of many congenital defects in animals and humans. The signaling mechanisms and the cellular processes underlying gastrulation have been studied in a variety of experimental model systems. The study of gastrulation in higher vertebrates such as amniotes (birds reptiles and mammals) has focused on the development of the chick and mouse embryo. The chick embryo has the advantage that development takes place outside the mother and is therefore easily accessible to experimental manipulation. The chick embryo is flat and translucent which makes observation of cell movements during gastrulation possible. To understand complex processes such as gastrulation it is essential to be able to follow the movements of all cells in the embryo. This requires very powerful microscopic techniques and one of the aims of this research is to build and develop a microscope with which this will be possible. This will require close collaboration between physicists, computer scientist and life scientists and we have assembled such a consortium. Once the instrument is build we will use it to map out cell division and movement during early chick development and generate a blueprint of this process. In a second phase we will start to investigate the signaling systems that control these movements by experimental perturbation, we will up and down regulate critical signaling molecules and study their quantitative effects on early development. From this we will build up a picture of the most critical processes that control gastrulation which will help in understanding many congenital defects and diseases in later life and knowledge obtained in these studies will be essential to be able to prevent and cure some of these cases in the future.
了解胚胎发育是生命科学研究的最大挑战之一,所有高等生物的胚胎发育的第一阶段是从融合精子与卵细胞的融合中形成了同志,后者通常是一系列快速细胞分裂,其中许多细胞产生了许多细胞。由于卵子的细胞质中存在不对称性,或母亲提供的外部不对称性,不同的细胞启动了不同的基因表达程序,这使细胞可以增殖,经历了程序性细胞死亡,区分和细胞移动。为了正确发展,这些过程必须在3维空间和时间上精确协调,这是通过广泛的细胞通信来实现的。细胞电池通信可能涉及通过直接的细胞接触(短距离)或通过可以在细胞之间的空间中扩散并传播相对较长距离的信号分子的信号传导。这些过程只有有限数量的形式和形状可以生成,在许多情况下,单元格将需要从它们生产的地方移至需要的位置。这在胃结构和神经系统的形成和接线过程中尤其重要。胃分解是胚胎发生的关键阶段,其中放置了胚胎的主体计划,并出现了对称性的轴。它涉及大规模的远程细胞运动,在此过程中,三个生殖器(外胚层,中胚层和内胚层)的细胞在胚胎中占据了正确的拓扑位置。内胚层位于胚胎,成年和内胚层细胞中,形成了消化道和相关腺体(肝胰腺等)的衬里。内胚层被中胚层包围,会导致肌肉和骨骼。中胚层被最高的层覆盖,即形成表皮和神经系统的外胚层。胃肠道过程中的细胞运动不当会导致流产性发育的严重病例,而在不太严重的情况下,动物和人类许多先天性缺陷的基础。在各种实验模型系统中已经研究了信号传导机制和基础胃的细胞过程。在较高的脊椎动物(例如羊膜爬行动物和哺乳动物)等较高脊椎动物中的胃结构的研究集中在雏鸡和小鼠胚胎的发展上。小鸡胚胎的优势是发育发生在母亲之外,因此可以轻松地进行实验操作。雏鸡的胚胎是扁平且半透明的,可以观察到胃部过程中细胞的运动。要了解诸如胃结构之类的复杂过程,必须能够跟随胚胎中所有细胞的运动。这需要非常强大的显微镜技术,这项研究的目的之一是构建和开发一个可能的显微镜。这将需要物理学家,计算机科学家和生活科学家之间的密切合作,我们已经组建了这样的财团。一旦构建仪器,我们将使用它来绘制早期小鸡发育过程中的细胞分裂和移动,并产生此过程的蓝图。在第二阶段,我们将开始研究通过实验扰动控制这些运动的信号系统,我们将上下调节关键信号分子,并研究其对早期发育的定量效应。由此,我们将建立控制胃胃肠道的最关键过程的图片,这将有助于理解这些研究中的许多先天性缺陷和疾病,对于能够预防和治愈这些案例至关重要。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Myosin-II-mediated cell shape changes and cell intercalation contribute to primitive streak formation.
  • DOI:
    10.1038/ncb3138
  • 发表时间:
    2015-04
  • 期刊:
  • 影响因子:
    21.3
  • 作者:
    Rozbicki E;Chuai M;Karjalainen AI;Song F;Sang HM;Martin R;Knölker HJ;MacDonald MP;Weijer CJ
  • 通讯作者:
    Weijer CJ
Gaussian vs. Bessel light-sheets: performance analysis in live large sample imaging
高斯光片与贝塞尔光片:实时大样本成像中的性能分析
  • DOI:
    10.1117/12.2277324
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Donnachie M
  • 通讯作者:
    Donnachie M
A 'chemotactic dipole' mechanism for large-scale vortex motion during primitive streak formation in the chick embryo
鸡胚原条形成过程中大规模涡旋运动的“趋化偶极子”机制
  • DOI:
    10.1088/1478-3975/8/4/045008
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Sandersius S
  • 通讯作者:
    Sandersius S
Reconstruction of distinct vertebrate gastrulation modes via modulation of key cell behaviours in the chick embryo
  • DOI:
    10.1101/2021.10.03.462938
  • 发表时间:
    2021-10-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chuai, Manli;Serrano-Najere, G.;Weijer, C. J.
  • 通讯作者:
    Weijer, C. J.
Dynamic morphoskeletons in development.
发育中的动态形态骨架。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kees Weijer其他文献

Differential effects of Wnt signaling in adult and fetal bone marrow-derived MSCs
  • DOI:
    10.1016/j.jcyt.2015.03.413
  • 发表时间:
    2015-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Maja M. Paciejweska;Marijke W. Maijenburg;Christian gilissen;Marion Kleijer;Kees Weijer;Joris A. Veltman;Marieke v. Lindern;e van der Schoot;Carlijn Voermans
  • 通讯作者:
    Carlijn Voermans

Kees Weijer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kees Weijer', 18)}}的其他基金

Early-stage embryo as an active self-tuning soft material
作为主动自调节软材料的早期胚胎
  • 批准号:
    EP/W023946/1
  • 财政年份:
    2022
  • 资助金额:
    $ 80.79万
  • 项目类别:
    Research Grant
Investigation of the mechanics of gastrulation in the chick embryo using new transgenic chicken lines
使用新的转基因鸡品系研究鸡胚原肠胚形成的机制
  • 批准号:
    BB/T006781/1
  • 财政年份:
    2020
  • 资助金额:
    $ 80.79万
  • 项目类别:
    Research Grant
Application for a TRI-SPIM fluorescence lightsheet microscope
TRI-SPIM 荧光光片显微镜的应用
  • 批准号:
    BB/R000441/1
  • 财政年份:
    2017
  • 资助金额:
    $ 80.79万
  • 项目类别:
    Research Grant
Epithelial Sheet Dynamics during Primitive Streak Formation as Active Matter
作为活性物质的原条形成过程中的上皮片动力学
  • 批准号:
    BB/N009789/1
  • 财政年份:
    2016
  • 资助金额:
    $ 80.79万
  • 项目类别:
    Research Grant
Cellular mechanisms of gastrulation: A combined experimental and modelling study
原肠胚形成的细胞机制:实验和建模相结合的研究
  • 批准号:
    BB/K00204X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 80.79万
  • 项目类别:
    Research Grant
Functional characterization of newly identified cytoskeletal binding proteins in the control of actin myosin dynamics during chemotaxis.
新鉴定的细胞骨架结合蛋白在趋化过程中控制肌动蛋白肌球蛋白动力学的功能表征。
  • 批准号:
    BB/L00271X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 80.79万
  • 项目类别:
    Research Grant

相似国自然基金

novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
  • 批准号:
    82304677
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
    32171163
  • 批准年份:
    2021
  • 资助金额:
    58.00 万元
  • 项目类别:
    面上项目

相似海外基金

Improving the Safety and Quality of Eye Plaque Brachytherapy by Assembly with Intensity Modulated Loading
通过调强加载组装提高眼斑近距离治疗的安全性和质量
  • 批准号:
    10579754
  • 财政年份:
    2023
  • 资助金额:
    $ 80.79万
  • 项目类别:
EPR scanner for tumor oximetry in the clinic
用于临床肿瘤血氧测定的 EPR 扫描仪
  • 批准号:
    10586942
  • 财政年份:
    2023
  • 资助金额:
    $ 80.79万
  • 项目类别:
A scalable electrokinetic flow cytometer and cell sorter
可扩展的动电流式细胞仪和细胞分选仪
  • 批准号:
    10546934
  • 财政年份:
    2022
  • 资助金额:
    $ 80.79万
  • 项目类别:
The Development of Tabletop Brain-Mapping Platform
桌面脑图平台的开发
  • 批准号:
    10487512
  • 财政年份:
    2021
  • 资助金额:
    $ 80.79万
  • 项目类别:
Electrical spectral imaging using magnetic resonance methods
使用磁共振方法进行电光谱成像
  • 批准号:
    10468820
  • 财政年份:
    2021
  • 资助金额:
    $ 80.79万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了