Bacterial hydrogenases for biohydrogen technology
用于生物氢技术的细菌氢化酶
基本信息
- 批准号:BB/H001190/1
- 负责人:
- 金额:$ 46.52万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Hydrogen gas is among a 'basket of solutions' for future energy needs. At present 99% of hydrogen is produced by reforming fossil fuels and 1% comes from electrolysis. Most is used directly by industry, but increasingly it is being used as a fuel. Hydrogen has the highest energy per weight of any fuel, and its use (particularly in a fuel cell) is clean and efficient. As the immediate product of energizing water by photolysis (sunlight) or renewable-powered electrolysis, hydrogen is the 'greenest' and most renewable of fuels. This fact is attracting major research funding in advanced countries, particularly USA, Australia, Germany and Sweden. The drawbacks of hydrogen are frequently voiced - low energy density, difficulty in storage (a disadvantage for small vehicles), primitive supply and distribution infrastructure - but these issues cannot hold back its development, and H2 will eventually be an important and even dominant part of human lives and economies. Biohydrogen is the production or oxidation of hydrogen by organisms. The scope for tapping into this resource constructively is enormous; yet hydrogen is also a nutrient for pathogens. Hydrogen is a byproduct of ammonia synthesis by microorganisms contained in plant root nodules, using an enzyme (catalyst) known as nitrogenase. Hydrogen is also produced and used as a fuel by a vast range of microorganisms. The chemistry depends upon oxygen-sensitive enzymes known as hydrogenases, which are essential to much of the microbial world, including strict soil aerobes, green algae that can be adapted to produce hydrogen, methane-producers, and some notorious human pathogens such as Helicobacter and Salmonella. Indeed, the efficiency of hydrogenases is crucial to bacterial virulence. We and others have proposed that the active sites of hydrogenases are as active as platinum - an expensive and limited resource. This has raised interest in their exploitation as actual or inspirational catalysts in electronic/fuel cell/sensor devices. Understanding and consequently being able to control the activity and oxygen-tolerance of hydrogenases within the cell are therefore among the most important factors in bringing about a future, fully renewable, and healthy H2 energy technology. The Oxford and Dundee laboratories are superbly complementary. The Dundee group has internationally-recognised expertise in studying the cell biology of hydrogenases in the common gut bacterium E. coli and the notorious pathogen, Salmonella. The Oxford group have pioneered a physical method for studying hydrogenases, which reveals, rapidly and accurately, all of their important catalytic properties. The method is an electrochemical technique known as protein film electrochemistry, and it involves the enzyme being attached to an electrode surface. The precise data that are obtained help guide further investigations, saving large amounts of research time and money that is spent worldwide on developing biohydrogen. The attachment of the enzyme molecule to an electrode is analogous to 'wiring' it to an electrical circuit, and in the process the enzyme is able to function as a practical electrocatalyst, able to produce electricity from hydrogen or hydrogen from electricity or light (if the enzyme is attached to light-sensitive particles).
氢气是未来能源需求的“一揽子解决方案”之一。目前,99%的氢气是通过重整化石燃料生产的,1%来自电解。大多数直接用于工业,但越来越多地用作燃料。氢是所有燃料中单位重量能量最高的,它的使用(特别是在燃料电池中)是清洁和高效的。作为通过光解(阳光)或可再生能源电解来激发水的直接产品,氢气是“最绿色”和最可再生的燃料。这一事实吸引了发达国家,特别是美国、澳大利亚、德国和瑞典的大量研究资金。氢的缺点经常被提及-能量密度低,难以储存(小型车辆的缺点),原始的供应和分配基础设施-但这些问题无法阻止其发展,H2最终将成为人类生活和经济的重要甚至主导部分。生物氢是由生物体产生或氧化氢。建设性地利用这一资源的空间是巨大的;然而氢也是病原体的营养素。氢是由植物根瘤中的微生物使用被称为固氮酶的酶(催化剂)合成氨的副产品。氢气也可以由大量的微生物产生并用作燃料。这种化学反应依赖于一种对氧敏感的酶,即氢化酶,它对许多微生物世界都是必不可少的,包括严格的土壤需氧菌、能够产生氢气的绿色藻类、甲烷生产菌以及一些臭名昭著的人类病原体,如螺杆菌和沙门氏菌。事实上,氢化酶的效率对细菌的毒力至关重要。我们和其他人提出,氢化酶的活性位点和铂一样活跃--铂是一种昂贵而有限的资源。这引起了人们对它们作为电子/燃料电池/传感器设备中的实际或启发性催化剂的开发的兴趣。因此,了解并因此能够控制细胞内氢化酶的活性和耐氧性是实现未来完全可再生和健康的H2能源技术的最重要因素之一。牛津实验室和邓迪实验室是极好的互补。邓迪小组在研究肠道细菌E.大肠杆菌和臭名昭著的沙门氏菌。牛津大学的研究小组开创了一种研究氢化酶的物理方法,该方法快速准确地揭示了它们所有重要的催化特性。该方法是一种被称为蛋白质膜电化学的电化学技术,它涉及将酶附着在电极表面。所获得的精确数据有助于指导进一步的研究,节省了全球用于开发生物氢的大量研究时间和资金。将酶分子附着到电极上类似于将其“布线”到电路上,并且在此过程中,酶能够充当实用的电催化剂,能够从氢产生电或从电或光产生氢(如果酶附着到光敏颗粒)。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
How the structure of the large subunit controls function in an oxygen-tolerant [NiFe]-hydrogenase.
- DOI:10.1042/bj20131520
- 发表时间:2014-03-15
- 期刊:
- 影响因子:0
- 作者:Bowman L;Flanagan L;Fyfe PK;Parkin A;Hunter WN;Sargent F
- 通讯作者:Sargent F
Water-gas shift reaction catalyzed by redox enzymes on conducting graphite platelets.
- DOI:10.1021/ja905797w
- 发表时间:2009-10-14
- 期刊:
- 影响因子:15
- 作者:Lazarus O;Woolerton TW;Parkin A;Lukey MJ;Reisner E;Seravalli J;Pierce E;Ragsdale SW;Sargent F;Armstrong FA
- 通讯作者:Armstrong FA
A regulatory domain controls the transport activity of a twin-arginine signal peptide.
调节结构域控制双精氨酸信号肽的转运活性。
- DOI:10.1016/j.febslet.2013.09.005
- 发表时间:2013
- 期刊:
- 影响因子:3.5
- 作者:Bowman L
- 通讯作者:Bowman L
Integration of an [FeFe]-hydrogenase into the anaerobic metabolism of Escherichia coli.
- DOI:10.1016/j.btre.2015.10.002
- 发表时间:2015-12
- 期刊:
- 影响因子:0
- 作者:Kelly CL;Pinske C;Murphy BJ;Parkin A;Armstrong F;Palmer T;Sargent F
- 通讯作者:Sargent F
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frank Sargent其他文献
Crystal structure of the molybdenum cofactor biosynthesis protein MobA from Escherichia coli at near-atomic resolution.
大肠杆菌钼辅因子生物合成蛋白 MobA 的近原子分辨率晶体结构。
- DOI:
10.1016/s0969-2126(00)00518-9 - 发表时间:
2000 - 期刊:
- 影响因子:5.7
- 作者:
Clare E. M. Stevenson;Frank Sargent;Frank Sargent;G. Buchanan;G. Buchanan;Tracy Palmer;Tracy Palmer;D. Lawson - 通讯作者:
D. Lawson
Assembly of membrane-bound respiratory complexes by the Tat protein-transport system
- DOI:
10.1007/s00203-002-0434-2 - 发表时间:
2002-08-01 - 期刊:
- 影响因子:2.600
- 作者:
Frank Sargent;Ben C. Berks;Tracy Palmer - 通讯作者:
Tracy Palmer
Frank Sargent的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frank Sargent', 18)}}的其他基金
Hydrogen and carbon dioxide biochemistry in the bacterial energy-transducing membrane.
细菌能量转换膜中的氢气和二氧化碳生物化学。
- 批准号:
BB/Y004302/1 - 财政年份:2024
- 资助金额:
$ 46.52万 - 项目类别:
Research Grant
Nonclassical protein secretion by bacteria.
细菌的非经典蛋白质分泌。
- 批准号:
BB/R016453/1 - 财政年份:2019
- 资助金额:
$ 46.52万 - 项目类别:
Research Grant
Understanding and harnessing the hydrogen-dependent carbon dioxide reductase activity of E. coli.
了解和利用大肠杆菌的氢依赖性二氧化碳还原酶活性。
- 批准号:
BB/S000666/1 - 财政年份:2019
- 资助金额:
$ 46.52万 - 项目类别:
Research Grant
High throughput bio-layer interferometry at Dundee for anti-microbial and interaction studies.
邓迪的高通量生物层干涉测量法用于抗菌和相互作用研究。
- 批准号:
BB/M012425/1 - 财政年份:2015
- 资助金额:
$ 46.52万 - 项目类别:
Research Grant
Metal-hydrido intermediates in enzymes: atomic level mechanistic insight and technological applications of hydrogenases
酶中的金属氢化物中间体:氢化酶的原子水平机理洞察和技术应用
- 批准号:
BB/L008521/1 - 财政年份:2014
- 资助金额:
$ 46.52万 - 项目类别:
Research Grant
The Assembly of Tetrathionate Reductase in Pathogenic Bacteria
病原菌中连四硫酸盐还原酶的组装
- 批准号:
G1100142/1 - 财政年份:2011
- 资助金额:
$ 46.52万 - 项目类别:
Research Grant
Integrated sustainable energy production from food wastes using dual harnessed hydrogenases and novel fuel cell
使用双利用氢化酶和新型燃料电池从食物垃圾中综合可持续能源生产
- 批准号:
BB/C516195/2 - 财政年份:2008
- 资助金额:
$ 46.52万 - 项目类别:
Research Grant
A high field NMR facility at Dundee for structural and interaction studies.
邓迪的高场核磁共振设施用于结构和相互作用研究。
- 批准号:
BB/F011636/1 - 财政年份:2008
- 资助金额:
$ 46.52万 - 项目类别:
Research Grant
System-specific chaperones on the Tat protein transport pathway
Tat 蛋白转运途径上的系统特异性伴侣
- 批准号:
BBS/B/07780/2 - 财政年份:2007
- 资助金额:
$ 46.52万 - 项目类别:
Research Grant
相似海外基金
Collaborative Research: Microbial hydrogen oxidation at high pressure: Role of hydrogenases and interspecies hydrogen transfer
合作研究:高压微生物氢氧化:氢化酶和种间氢转移的作用
- 批准号:
1951673 - 财政年份:2020
- 资助金额:
$ 46.52万 - 项目类别:
Standard Grant
Collaborative Research: Microbial hydrogen oxidation at high pressure: Role of hydrogenases and interspecies hydrogen transfer
合作研究:高压微生物氢氧化:氢化酶和种间氢转移的作用
- 批准号:
1951690 - 财政年份:2020
- 资助金额:
$ 46.52万 - 项目类别:
Standard Grant
Structural basis and reaction mechanism of [FeFe] hydrogenases
[FeFe]氢化酶的结构基础和反应机制
- 批准号:
20H03215 - 财政年份:2020
- 资助金额:
$ 46.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Structural and mechanisctic studies of a novel group of oxygen-tolerant [FeFe] hydrogenases
职业:一组新型耐氧 [FeFe] 氢化酶的结构和机制研究
- 批准号:
1943748 - 财政年份:2020
- 资助金额:
$ 46.52万 - 项目类别:
Continuing Grant
Correlation of three-dimensional and electronic structure of [FeFe] hydrogenases
[FeFe]氢化酶三维结构与电子结构的相关性
- 批准号:
428175165 - 财政年份:2019
- 资助金额:
$ 46.52万 - 项目类别:
Priority Programmes
Engineering of O2-tolerant hydrogenases and their physiological implications in recombinant bacteria in view of hydrogenase-driven NAD(P)H regeneration and H2 production
鉴于氢化酶驱动的 NAD(P)H 再生和 H2 生产,耐 O2 氢化酶的工程及其在重组细菌中的生理学意义
- 批准号:
405325648 - 财政年份:2018
- 资助金额:
$ 46.52万 - 项目类别:
Research Grants
De novo designed metalloproteins as a new generation of artificial hydrogenases
从头设计金属蛋白作为新一代人工氢化酶
- 批准号:
10360279 - 财政年份:2018
- 资助金额:
$ 46.52万 - 项目类别:
Reaction mechanism of [FeFe] hydrogenases
[FeFe]氢化酶的反应机理
- 批准号:
16K21748 - 财政年份:2017
- 资助金额:
$ 46.52万 - 项目类别:
Fund for the Promotion of Joint International Research (Home-Returning Researcher Development Research)
Towards a mechanistic understanding of the role of the iron-sulphur cluster-containing HypD protein in diatomic ligand biosynthesis of [NiFe]-hydrogenases
深入了解含铁硫簇的 HypD 蛋白在 [NiFe]-氢化酶双原子配体生物合成中的作用
- 批准号:
310984010 - 财政年份:2016
- 资助金额:
$ 46.52万 - 项目类别:
Priority Programmes