The Assembly of Tetrathionate Reductase in Pathogenic Bacteria
病原菌中连四硫酸盐还原酶的组装
基本信息
- 批准号:G1100142/1
- 负责人:
- 金额:$ 42.01万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bacteria are the simplest truly living things known to man. Some bacteria are dangerous and Salmonella is one of the primary causes of foodborne illness in the developed world. Many bacteria can live and grow without oxygen, and instead utilise other chemicals from the environment to generate energy for life. Salmonella is one such bacterium and it decorates the surface of itself with an impressive armoury of enzymes, which it uses to energize itself. Building these enzymes is a complicated process for the cell and involves the recruitment of metals atoms and other proteins to form the final finished enzyme. If scientists interfere deliberately in this process the new ?mutant? bacteria that are isolated are found to be no longer dangerous. The fact that many of these enzymes are often found outside on the surface of the cell is of key interest. How these enzymes get out the cell, and how they are fully assembled with all their metals and subunits attached before that, is the thrust of this research project. Most enzymes that are destined to be located outside the cell are identifiable by the presence of a special ?signal? on them. We have found this signal, which is also made of protein, has two jobs in the cell. First, it helps to assemble the subunits and metals, then second, it helps to locate the finished enzyme outside the cell. To do this the signal works in tandem with a ?chaperone? protein that interacts extensively with it and regulates its function. Once we learn in detail how these processes work we may be able to learn how design a new antibiotic to stop this system working in Salmonella without harming the environment. These types of processes are not used by human cells, which makes them a very attractive target for developing novel anti-bacterials.
细菌是人类所知的最简单的真正的生物。有些细菌是危险的,沙门氏菌是发达国家食源性疾病的主要原因之一。许多细菌可以在没有氧气的情况下生存和生长,而是利用环境中的其他化学物质来产生生命所需的能量。沙门氏菌就是这样一种细菌,它用一种令人印象深刻的酶来装饰自己的表面,它用这种酶来为自己提供能量。构建这些酶对细胞来说是一个复杂的过程,涉及金属原子和其他蛋白质的募集,以形成最终的酶。如果科学家故意干预这一过程,新的?变种人?被隔离的细菌被发现不再危险。事实上,这些酶中的许多经常在细胞表面上被发现,这是关键的兴趣。这些酶如何离开细胞,以及它们如何与所有金属和亚基完全组装在一起,这是这个研究项目的重点。大多数注定要位于细胞外的酶都可以通过一种特殊的?信号?在他们身上。我们已经发现这种信号也是由蛋白质组成的,在细胞中有两种作用。首先,它有助于组装亚基和金属,其次,它有助于将成品酶定位在细胞外。要做到这一点的信号工程串联?监护人与之广泛相互作用并调节其功能的蛋白质。一旦我们详细了解这些过程是如何工作的,我们就可以学习如何设计一种新的抗生素来阻止沙门氏菌中的这一系统,而不损害环境。这些类型的过程不被人类细胞使用,这使得它们成为开发新型抗菌药物的非常有吸引力的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frank Sargent其他文献
Crystal structure of the molybdenum cofactor biosynthesis protein MobA from Escherichia coli at near-atomic resolution.
大肠杆菌钼辅因子生物合成蛋白 MobA 的近原子分辨率晶体结构。
- DOI:
10.1016/s0969-2126(00)00518-9 - 发表时间:
2000 - 期刊:
- 影响因子:5.7
- 作者:
Clare E. M. Stevenson;Frank Sargent;Frank Sargent;G. Buchanan;G. Buchanan;Tracy Palmer;Tracy Palmer;D. Lawson - 通讯作者:
D. Lawson
Assembly of membrane-bound respiratory complexes by the Tat protein-transport system
- DOI:
10.1007/s00203-002-0434-2 - 发表时间:
2002-08-01 - 期刊:
- 影响因子:2.600
- 作者:
Frank Sargent;Ben C. Berks;Tracy Palmer - 通讯作者:
Tracy Palmer
Frank Sargent的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frank Sargent', 18)}}的其他基金
Hydrogen and carbon dioxide biochemistry in the bacterial energy-transducing membrane.
细菌能量转换膜中的氢气和二氧化碳生物化学。
- 批准号:
BB/Y004302/1 - 财政年份:2024
- 资助金额:
$ 42.01万 - 项目类别:
Research Grant
Nonclassical protein secretion by bacteria.
细菌的非经典蛋白质分泌。
- 批准号:
BB/R016453/1 - 财政年份:2019
- 资助金额:
$ 42.01万 - 项目类别:
Research Grant
Understanding and harnessing the hydrogen-dependent carbon dioxide reductase activity of E. coli.
了解和利用大肠杆菌的氢依赖性二氧化碳还原酶活性。
- 批准号:
BB/S000666/1 - 财政年份:2019
- 资助金额:
$ 42.01万 - 项目类别:
Research Grant
High throughput bio-layer interferometry at Dundee for anti-microbial and interaction studies.
邓迪的高通量生物层干涉测量法用于抗菌和相互作用研究。
- 批准号:
BB/M012425/1 - 财政年份:2015
- 资助金额:
$ 42.01万 - 项目类别:
Research Grant
Metal-hydrido intermediates in enzymes: atomic level mechanistic insight and technological applications of hydrogenases
酶中的金属氢化物中间体:氢化酶的原子水平机理洞察和技术应用
- 批准号:
BB/L008521/1 - 财政年份:2014
- 资助金额:
$ 42.01万 - 项目类别:
Research Grant
Bacterial hydrogenases for biohydrogen technology
用于生物氢技术的细菌氢化酶
- 批准号:
BB/H001190/1 - 财政年份:2009
- 资助金额:
$ 42.01万 - 项目类别:
Research Grant
Integrated sustainable energy production from food wastes using dual harnessed hydrogenases and novel fuel cell
使用双利用氢化酶和新型燃料电池从食物垃圾中综合可持续能源生产
- 批准号:
BB/C516195/2 - 财政年份:2008
- 资助金额:
$ 42.01万 - 项目类别:
Research Grant
A high field NMR facility at Dundee for structural and interaction studies.
邓迪的高场核磁共振设施用于结构和相互作用研究。
- 批准号:
BB/F011636/1 - 财政年份:2008
- 资助金额:
$ 42.01万 - 项目类别:
Research Grant
System-specific chaperones on the Tat protein transport pathway
Tat 蛋白转运途径上的系统特异性伴侣
- 批准号:
BBS/B/07780/2 - 财政年份:2007
- 资助金额:
$ 42.01万 - 项目类别:
Research Grant