Bacterial hydrogenases for biohydrogen technology
用于生物氢技术的细菌氢化酶
基本信息
- 批准号:BB/H003878/1
- 负责人:
- 金额:$ 66.79万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Hydrogen gas is among a 'basket of solutions' for future energy needs. At present 99% of hydrogen is produced by reforming fossil fuels and 1% comes from electrolysis. Most is used directly by industry, but increasingly it is being used as a fuel. Hydrogen has the highest energy per weight of any fuel, and its use (particularly in a fuel cell) is clean and efficient. As the immediate product of energizing water by photolysis (sunlight) or renewable-powered electrolysis, hydrogen is the 'greenest' and most renewable of fuels. This fact is attracting major research funding in advanced countries, particularly USA, Australia, Germany and Sweden. The drawbacks of hydrogen are frequently voiced - low energy density, difficulty in storage (a disadvantage for small vehicles), primitive supply and distribution infrastructure - but these issues cannot hold back its development, and H2 will eventually be an important and even dominant part of human lives and economies. Biohydrogen is the production or oxidation of hydrogen by organisms. The scope for tapping into this resource constructively is enormous; yet hydrogen is also a nutrient for pathogens. Hydrogen is a byproduct of ammonia synthesis by microorganisms contained in plant root nodules, using an enzyme (catalyst) known as nitrogenase. Hydrogen is also produced and used as a fuel by a vast range of microorganisms. The chemistry depends upon oxygen-sensitive enzymes known as hydrogenases, which are essential to much of the microbial world, including strict soil aerobes, green algae that can be adapted to produce hydrogen, methane-producers, and some notorious human pathogens such as Helicobacter and Salmonella. Indeed, the efficiency of hydrogenases is crucial to bacterial virulence. We and others have proposed that the active sites of hydrogenases are as active as platinum - an expensive and limited resource. This has raised interest in their exploitation as actual or inspirational catalysts in electronic/fuel cell/sensor devices. Understanding and consequently being able to control the activity and oxygen-tolerance of hydrogenases within the cell are therefore among the most important factors in bringing about a future, fully renewable, and healthy H2 energy technology. The Oxford and Dundee laboratories are superbly complementary. The Dundee group has internationally-recognised expertise in studying the cell biology of hydrogenases in the common gut bacterium E. coli and the notorious pathogen, Salmonella. The Oxford group have pioneered a physical method for studying hydrogenases, which reveals, rapidly and accurately, all of their important catalytic properties. The method is an electrochemical technique known as protein film electrochemistry, and it involves the enzyme being attached to an electrode surface. The precise data that are obtained help guide further investigations, saving large amounts of research time and money that is spent worldwide on developing biohydrogen. The attachment of the enzyme molecule to an electrode is analogous to 'wiring' it to an electrical circuit, and in the process the enzyme is able to function as a practical electrocatalyst, able to produce electricity from hydrogen or hydrogen from electricity or light (if the enzyme is attached to light-sensitive particles).
氢气是满足未来能源需求的“一篮子解决方案”之一。目前,99%的氢是通过重整化石燃料生产的,1%来自电解。大多数是直接由工业使用,但越来越多地被用作燃料。氢的单位重量能量是所有燃料中最高的,而且它的使用(特别是在燃料电池中)是清洁和高效的。作为通过光解(阳光)或可再生动力电解使水通电的直接产物,氢是“最环保”和最可再生的燃料。这一事实吸引了发达国家,特别是美国、澳大利亚、德国和瑞典的主要研究资金。氢的缺点经常被提及——能量密度低,储存困难(对小型车辆来说是一个缺点),原始的供应和分配基础设施——但这些问题不能阻碍它的发展,氢最终将成为人类生活和经济的重要甚至主导部分。生物氢是生物体产生或氧化氢。建设性地利用这一资源的空间是巨大的;然而,氢也是病原体的营养物。氢是植物根瘤中含有的微生物利用一种称为氮酶的酶(催化剂)合成氨的副产物。氢气也被大量微生物生产和用作燃料。这种化学反应依赖于被称为氢化酶的对氧敏感的酶,这种酶对许多微生物世界都是必不可少的,包括严格的土壤需氧菌、可以产生氢的绿藻、甲烷生产者,以及一些臭名昭著的人类病原体,如幽门螺杆菌和沙门氏菌。事实上,氢化酶的效率对细菌的毒力至关重要。我们和其他人提出,氢化酶的活性位点与铂一样活跃,而铂是一种昂贵而有限的资源。这引起了人们对它们在电子/燃料电池/传感器设备中作为实际或灵感催化剂的开发的兴趣。因此,了解并因此能够控制细胞内氢化酶的活性和氧耐受性是实现未来、完全可再生和健康的氢能源技术的最重要因素之一。牛津大学和邓迪大学的实验室非常互补。邓迪研究小组在研究常见的肠道细菌大肠杆菌和臭名昭著的病原体沙门氏菌中的氢化酶的细胞生物学方面拥有国际公认的专业知识。牛津大学的研究小组开创了一种研究氢化酶的物理方法,这种方法可以快速准确地揭示它们所有重要的催化特性。这种方法是一种被称为蛋白质膜电化学的电化学技术,它涉及到将酶附着在电极表面。获得的精确数据有助于指导进一步的调查,节省了世界范围内用于开发生物氢的大量研究时间和金钱。将酶分子附着在电极上类似于将其“布线”到电路上,在这个过程中,酶能够作为一种实用的电催化剂,能够从氢中产生电,或者从电或光中产生氢(如果酶附着在光敏颗粒上)。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electroanalytical Chemistry - A Series of Advances: Volume 25
电分析化学 - 一系列进展:第 25 卷
- DOI:10.1201/b15576-3
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Armstrong F
- 通讯作者:Armstrong F
Gas pressure effects on the rates of catalytic H(2) oxidation by hydrogenases.
气压影响氢化酶催化 H(2) 氧化的速率。
- DOI:10.1039/c0cc03292a
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Cracknell JA
- 通讯作者:Cracknell JA
How light-harvesting semiconductors can alter the bias of reversible electrocatalysts in favor of H2 production and CO2 reduction.
- DOI:10.1021/ja4042675
- 发表时间:2013-10-09
- 期刊:
- 影响因子:15
- 作者:Bachmeier, Andreas;Wang, Vincent C. C.;Woolerton, Thomas W.;Bell, Sophie;Fontecilla-Camps, Juan C.;Can, Mehmet;Ragsdale, Stephen W.;Chaudhary, Yatendra S.;Armstrong, Fraser A.
- 通讯作者:Armstrong, Fraser A.
Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals.
- DOI:10.1039/c1cc16107e
- 发表时间:2012-01-04
- 期刊:
- 影响因子:0
- 作者:Chaudhary YS;Woolerton TW;Allen CS;Warner JH;Pierce E;Ragsdale SW;Armstrong FA
- 通讯作者:Armstrong FA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fraser Armstrong其他文献
Fraser Armstrong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fraser Armstrong', 18)}}的其他基金
The Electrochemical Leaf:Rapid, Reversible Cycling of Nicotinamide Cofactors for Enzyme-based Organic Synthesis
电化学叶子:用于酶基有机合成的烟酰胺辅因子的快速、可逆循环
- 批准号:
BB/P023797/1 - 财政年份:2017
- 资助金额:
$ 66.79万 - 项目类别:
Research Grant
How hydrogenases work at the atomic level
氢化酶如何在原子水平上发挥作用
- 批准号:
BB/N006321/1 - 财政年份:2016
- 资助金额:
$ 66.79万 - 项目类别:
Research Grant
Metal-hydrido intermediates in enzymes: atomic level mechanistic insight and technological applications of hydrogenases
酶中的金属氢化物中间体:氢化酶的原子水平机理洞察和技术应用
- 批准号:
BB/L009722/1 - 财政年份:2014
- 资助金额:
$ 66.79万 - 项目类别:
Research Grant
14-ERASynBio Engineering the chloroplast of microalgae as a chassis for the direct production of solar fuels and chemicals
14-ERASynBio 将微藻叶绿体工程化,作为直接生产太阳能燃料和化学品的基础
- 批准号:
BB/M005720/1 - 财政年份:2014
- 资助金额:
$ 66.79万 - 项目类别:
Research Grant
The Supergen Biological Fuel Cells Consortium 2010-2014 (CORE)
Supergen 生物燃料电池联盟 2010-2014 (CORE)
- 批准号:
EP/H019480/1 - 财政年份:2010
- 资助金额:
$ 66.79万 - 项目类别:
Research Grant
The Supergen5 Biological Fuel Cells Consortium
Supergen5 生物燃料电池联盟
- 批准号:
EP/D047943/1 - 财政年份:2006
- 资助金额:
$ 66.79万 - 项目类别:
Research Grant
A New Voltammetric Strategy for Investigating Reactive Iron-Sulfur Clusters
研究活性铁硫簇的新伏安策略
- 批准号:
9118772 - 财政年份:1992
- 资助金额:
$ 66.79万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: Microbial hydrogen oxidation at high pressure: Role of hydrogenases and interspecies hydrogen transfer
合作研究:高压微生物氢氧化:氢化酶和种间氢转移的作用
- 批准号:
1951673 - 财政年份:2020
- 资助金额:
$ 66.79万 - 项目类别:
Standard Grant
Collaborative Research: Microbial hydrogen oxidation at high pressure: Role of hydrogenases and interspecies hydrogen transfer
合作研究:高压微生物氢氧化:氢化酶和种间氢转移的作用
- 批准号:
1951690 - 财政年份:2020
- 资助金额:
$ 66.79万 - 项目类别:
Standard Grant
Structural basis and reaction mechanism of [FeFe] hydrogenases
[FeFe]氢化酶的结构基础和反应机制
- 批准号:
20H03215 - 财政年份:2020
- 资助金额:
$ 66.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Structural and mechanisctic studies of a novel group of oxygen-tolerant [FeFe] hydrogenases
职业:一组新型耐氧 [FeFe] 氢化酶的结构和机制研究
- 批准号:
1943748 - 财政年份:2020
- 资助金额:
$ 66.79万 - 项目类别:
Continuing Grant
Correlation of three-dimensional and electronic structure of [FeFe] hydrogenases
[FeFe]氢化酶三维结构与电子结构的相关性
- 批准号:
428175165 - 财政年份:2019
- 资助金额:
$ 66.79万 - 项目类别:
Priority Programmes
Engineering of O2-tolerant hydrogenases and their physiological implications in recombinant bacteria in view of hydrogenase-driven NAD(P)H regeneration and H2 production
鉴于氢化酶驱动的 NAD(P)H 再生和 H2 生产,耐 O2 氢化酶的工程及其在重组细菌中的生理学意义
- 批准号:
405325648 - 财政年份:2018
- 资助金额:
$ 66.79万 - 项目类别:
Research Grants
De novo designed metalloproteins as a new generation of artificial hydrogenases
从头设计金属蛋白作为新一代人工氢化酶
- 批准号:
10360279 - 财政年份:2018
- 资助金额:
$ 66.79万 - 项目类别:
Reaction mechanism of [FeFe] hydrogenases
[FeFe]氢化酶的反应机理
- 批准号:
16K21748 - 财政年份:2017
- 资助金额:
$ 66.79万 - 项目类别:
Fund for the Promotion of Joint International Research (Home-Returning Researcher Development Research)
How hydrogenases work at the atomic level
氢化酶如何在原子水平上发挥作用
- 批准号:
BB/N006321/1 - 财政年份:2016
- 资助金额:
$ 66.79万 - 项目类别:
Research Grant














{{item.name}}会员




