Metal-hydrido intermediates in enzymes: atomic level mechanistic insight and technological applications of hydrogenases

酶中的金属氢化物中间体:氢化酶的原子水平机理洞察和技术应用

基本信息

  • 批准号:
    BB/L009722/1
  • 负责人:
  • 金额:
    $ 54.4万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Renewable hydrogen offers us a future free of fossil fuels, not just because we might use hydrogen in our cars, but because hydrogen is the primary chemical formed upon water energisation by sunlight and is used to make other energy-rich chemicals. Hydrogen, the simplest of molecules is also one of the most important industrial chemicals and more than 70 million tonnes are used worldwide. It is a raw material for some of the most important chemical processes, particularly in making ammonia, the essential fertiliser. At present, most hydrogen is produced from fossil fuels; however, hydrogen is also the greenest and most easily renewable of future fuels and raw materials because sunlight and water are earth-abundant resources. We are familiar with the electrolysis experiment in the school laboratory where hydrogen is formed along with oxygen because electrical energy is converted to chemical energy: explosive recombination of the hydrogen and oxygen, initiated by a spark, releases back much of the original electrical energy as heat and light. Solar energy also, can be stored as hydrogen; indeed, green plants do this in a disguised way in photosynthesis (consider that 'hydrogen' is 'stored' by combining it with carbon dioxide to give hydrocarbons and carbohydrates). Energy from the sun is easily able to convert water from the oceans into hydrogen and oxygen yet we this does not happen at any detectable rate: converting water to hydrogen requires not only systems for absorbing radiative energy (pigments, semiconductors) but also catalysts that will accelerate the chemical reactions. This research project is about the catalysts, produced by microorganisms, that convert water into hydrogen, and vice versa, at rates of many thousands per second at normal temperatures. These catalysts are giant molecules - enzymes known as hydrogenases - and they are of great importance for understanding and designing the chemistry of future hydrogen technologies. It is through hydrogenases that microbes thrive in all kinds of different environments and produce hydrogen (biohydrogen) for human benefit. Conversely, hydrogenases are important for the action of some notorious pathogens. Use of hydrogen in current industrial applications requires high temperatures and expensive resources. In terms of performance, the best catalysts available to industry are based on platinum, a limited, expensive element. In contrast, hydrogenases catalyse the interconversion between hydrogen gas and protons (water) at rates and efficiencies higher than platinum but using the common elements iron and nickel. To achieve these rates, nickel and iron are 'dressed up' in special atomic environments that are also buried to shield them from water and other small molecules that may disrupt or destroy the special environment. One of the specific aims of this research is to establish how the special structures of the active sites of the two kinds of hydrogenase (one contains only iron, the other contains iron and nickel) perfected by biology during over two billion years of evolution, lead to such high activity. How does hydrogen interact with the atoms of the active site, how important is the exact positioning of different atoms, how important are bond strengths and mobilities of different groups, what special properties of other small molecules enable them to block the normal reactions with hydrogen ? With this information we can (a) determine definitive rules for the design of synthetic catalysts, based on iron or nickel having activities as high as platinum, (b) engineer hydrogenases so that they can survive oxygen, leading eventually to sustainable, large scale photosynthetic hydrogen production by whole organisms, (c) engineer hydrogenases so that they can be applied, as isolated enzymes, in special technologies such as fuel cells and in continuous 'cofactor regeneration' a technical requirement for enzyme-based synthesis of some expensive chemicals.
可再生氢为我们提供了一个没有化石燃料的未来,这不仅仅是因为我们可能在汽车中使用氢,而是因为氢是太阳光激发水形成的主要化学物质,并用于制造其他富含能量的化学物质。氢是最简单的分子,也是最重要的工业化学品之一,全球使用量超过7000万吨。它是一些最重要的化学过程的原材料,特别是在制造氨,基本的肥料。目前,大多数氢气都是从化石燃料中生产的;然而,氢气也是未来燃料和原材料中最绿色和最容易再生的,因为阳光和水是地球上丰富的资源。我们熟悉学校实验室里的电解实验,在这个实验中,氢气和氧气沿着形成,因为电能被转化为化学能:氢气和氧气在火花的作用下爆炸性地重新结合,释放出大量的原始电能,成为热和光。太阳能也可以储存为氢;事实上,绿色植物在光合作用中以伪装的方式做到这一点(考虑到“氢”是通过与二氧化碳结合产生碳氢化合物和碳水化合物来“储存”的)。来自太阳的能量很容易将海洋中的水转化为氢和氧,但我们无法以任何可检测的速度进行:将水转化为氢不仅需要吸收辐射能的系统(颜料,半导体),还需要加速化学反应的催化剂。 这个研究项目是关于由微生物产生的催化剂,在常温下以每秒数千的速度将水转化为氢气,反之亦然。这些催化剂是巨大的分子--被称为氢化酶的酶--它们对于理解和设计未来氢技术的化学性质非常重要。正是通过氢化酶,微生物才能在各种不同的环境中茁壮成长,并为人类生产氢气(生物氢)。相反,氢化酶对于某些臭名昭著的病原体的作用是重要的。 在当前的工业应用中使用氢需要高温和昂贵的资源。就性能而言,工业上可用的最好的催化剂是基于铂的,铂是一种有限的、昂贵的元素。相比之下,氢化酶催化氢气和质子(水)之间的相互转化的速率和效率高于铂,但使用常见的元素铁和镍。为了达到这些速率,镍和铁被“打扮”在特殊的原子环境中,这些原子环境也被埋起来,以保护它们免受可能破坏或破坏特殊环境的水和其他小分子的影响。这项研究的具体目的之一是确定两种氢化酶(一种只含铁,另一种含铁和镍)活性位点的特殊结构是如何在20亿年的进化过程中被生物学完善的,导致如此高的活性。氢如何与活性中心的原子相互作用,不同原子的精确定位有多重要,不同基团的键强度和迁移率有多重要,其他小分子的特殊性质使它们能够阻止与氢的正常反应?有了这些信息,我们可以(a)确定基于具有与铂一样高的活性的铁或镍的合成催化剂的设计的明确规则,(B)工程氢化酶,使得它们可以在氧气中存活,最终导致整个生物体的可持续的大规模光合制氢,(c)工程氢化酶,使得它们可以作为分离的酶应用,在特殊技术中,如燃料电池和连续的“辅因子再生”,这是一些昂贵化学品的酶基合成的技术要求。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Vibrational Spectroscopic Techniques for Probing Bioelectrochemical Systems.
用于探测生物电化学系统的振动光谱技术。
Proton Transfer in the Catalytic Cycle of [NiFe] Hydrogenases: Insight from Vibrational Spectroscopy.
  • DOI:
    10.1021/acscatal.6b03182
  • 发表时间:
    2017-04-07
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Ash PA;Hidalgo R;Vincent KA
  • 通讯作者:
    Vincent KA
Some fundamental insights into biological redox catalysis from the electrochemical characteristics of enzymes attached directly to electrodes.
  • DOI:
    10.1016/j.electacta.2021.138836
  • 发表时间:
    2021-09-10
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Armstrong FA
  • 通讯作者:
    Armstrong FA
Generating single metalloprotein crystals in well-defined redox states: electrochemical control combined with infrared imaging of a NiFe hydrogenase crystal.
  • DOI:
    10.1039/c7cc02591b
  • 发表时间:
    2017-05-30
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ash PA;Carr SB;Reeve HA;Skorupskaitė A;Rowbotham JS;Shutt R;Frogley MD;Evans RM;Cinque G;Armstrong FA;Vincent KA
  • 通讯作者:
    Vincent KA
Protein Film Infrared Electrochemistry Demonstrated for Study of H2 Oxidation by a [NiFe] Hydrogenase.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fraser Armstrong其他文献

Fraser Armstrong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fraser Armstrong', 18)}}的其他基金

The Electrochemical Leaf:Rapid, Reversible Cycling of Nicotinamide Cofactors for Enzyme-based Organic Synthesis
电化学叶子:用于酶基有机合成的烟酰胺辅因子的快速、可逆循环
  • 批准号:
    BB/P023797/1
  • 财政年份:
    2017
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Research Grant
How hydrogenases work at the atomic level
氢化酶如何在原子水平上发挥作用
  • 批准号:
    BB/N006321/1
  • 财政年份:
    2016
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Research Grant
14-ERASynBio Engineering the chloroplast of microalgae as a chassis for the direct production of solar fuels and chemicals
14-ERASynBio 将微藻叶绿体工程化,作为直接生产太阳能燃料和化学品的基础
  • 批准号:
    BB/M005720/1
  • 财政年份:
    2014
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Research Grant
How E. coli produces hydrogen
大肠杆菌如何产生氢气
  • 批准号:
    BB/I022309/1
  • 财政年份:
    2012
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Research Grant
The Supergen Biological Fuel Cells Consortium 2010-2014 (CORE)
Supergen 生物燃料电池联盟 2010-2014 (CORE)
  • 批准号:
    EP/H019480/1
  • 财政年份:
    2010
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Research Grant
Bacterial hydrogenases for biohydrogen technology
用于生物氢技术的细菌氢化酶
  • 批准号:
    BB/H003878/1
  • 财政年份:
    2009
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Research Grant
The Supergen5 Biological Fuel Cells Consortium
Supergen5 生物燃料电池联盟
  • 批准号:
    EP/D047943/1
  • 财政年份:
    2006
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Research Grant
A New Voltammetric Strategy for Investigating Reactive Iron-Sulfur Clusters
研究活性铁硫簇的新伏安策略
  • 批准号:
    9118772
  • 财政年份:
    1992
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Continuing Grant

相似海外基金

Metal-hydrido intermediates in enzymes: atomic level mechanistic insight and technological applications of hydrogenases
酶中的金属氢化物中间体:氢化酶的原子水平机理洞察和技术应用
  • 批准号:
    BB/L008521/1
  • 财政年份:
    2014
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Research Grant
Study on the Reaction Mechanism of the Reaction of Isolable Hydrido-chalcogenolato Platinum Complexes with Alkynes
可分离氢化硫属铂配合物与炔烃反应机理研究
  • 批准号:
    21550035
  • 财政年份:
    2009
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hydrogenation of Carbon Dioxide by Combining Ruthenium Hydrido Complexes with Protic Ligands and Protic Metal Oxide Sites
通过氢化钌络合物与质子配体和质子金属氧化物位点结合进行二氧化碳氢化
  • 批准号:
    68851009
  • 财政年份:
    2008
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Research Grants
Hydrosilation by imido supported hydrido silyl complexes of molybdenum
亚氨基负载的钼氢化硅络合物的硅氢化反应
  • 批准号:
    369045-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 54.4万
  • 项目类别:
    University Undergraduate Student Research Awards
Synthesis, Reaction and Catalysis of Heterodinuclear Alkyl-and Hydridoplatinum(or palladium) Complexes
异双核烷基和氢化铂(或钯)配合物的合成、反应和催化
  • 批准号:
    14078208
  • 财政年份:
    2002
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Elementarreaktionen in der metallorganischen Chemie und homogenen Katalyse: Oxidative Additionen und reduktive Eliminierungen bei Platina-beta-diketonen und Acyl(hydrido)platin(IV)-Komplexen
有机金属化学和均相催化中的基本反应:铂-β-二酮和酰基(氢)铂(IV)配合物中的氧化加成和还原消除
  • 批准号:
    5180778
  • 财政年份:
    1999
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Research Grants
Development of Highly Efficient Bond Dissociation and Bond Formation Reactions Utilizing Group 6 Organometallic Complexes
利用第 6 族有机金属配合物开发高效键解离和键形成反应
  • 批准号:
    10450340
  • 财政年份:
    1998
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Transition Metal Complexes of Positively Charged Crown Thioethers
带正电荷冠硫醚的过渡金属配合物
  • 批准号:
    05804033
  • 财政年份:
    1993
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Hydrido Transition Metal Cluster Complexes: Synthesis, Characterization and Catalytic Properties
氢化过渡金属簇配合物:合成、表征和催化性能
  • 批准号:
    7615346
  • 财政年份:
    1976
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Continuing Grant
HYDRIDO TRANSITION METAL CLUSTER COMPLEXES
氢化过渡金属簇络合物
  • 批准号:
    7354413
  • 财政年份:
    1973
  • 资助金额:
    $ 54.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了