Physical investigation and understanding of biomineralisation proteins and their use for the synthesis of new nanomaterials
生物矿化蛋白质的物理研究和理解及其在合成新纳米材料中的用途
基本信息
- 批准号:BB/H005412/1
- 负责人:
- 金额:$ 73.49万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Scientific and economic interest in nanotechnology has grown in recent years. Within this the quest to produce tiny and highly tailored magnetic particles, or nanomagnets is crucial. Nanomagnets have a range of practical uses. Historically they have been used for information storage such as tapes and hard drives. Recently this has expanded, with the development of 3D information storage systems providing high density data storage. There is also much interest in the medical applications of nanomagnets. Magnetic particles are being developed to provide targeted medicine within the body. For example, if drugs are tied to nanomagnets at the molecular level then they can be directed by a magnet to specific sites within the patient. This allows a drug to be delivered to a specific area, without harming the rest of the body. Similarly, nanomagnets can be used in hyperthermic therapies. This is where, after being directed to specific tumour sites, magnetic particles are heated to either destroy a tumour or activate a drug. However, as nanotechnology grows, so too does the need to develop precisely engineered nanomagnets. Different applications demand different shapes and sizes of particles and different magnetic properties. Controlling the composition and dimensions of nanomagnets has therefore become a key goal of researchers. Biomineralisation is the process that occurs in living organisms to produce minerals such as bones. Because genetics control biomineralisation processes the materials produced exhibit very precise, uniform and intricate formations down to the nano-scale. Furthermore, if the genetics are understood it may be possible to change with precision the nature of biomineralised materials. Magnetotactic bacteria biomineralise high quality and uniform nanoparticles of the iron-oxide magnetite within biological fatty shells (or vesicles) within the bacterial cell (termed magnetosomes). Because magnetosomes exhibit considerable uniformity and precision they present a novel and attractive route to produce high quality nanoparticles. However, the biomineralisation method can be inefficient for commercial production and is restricted to the specifications imposed by the bacterial cell leaving little flexibility for further modifications. A protein found to be involved in making nanomagnets in the bacteria has previously been extracted, and mass produced (expressed) and used in a chemical precipitation of magnetic particles. The protein was found to control the particle's size and shape even in this chemical production outside the bacterial cell. This research will identify biomineralisation proteins from the genetic information we have about magnetic bacteria, and investigate these proteins individually by expressing then and using them in a chemical formation of nanoparticles similar to the previous study. From this we will study in detail how the protein physically controls the size and shape of the particles using microscopy, spectroscopy and diffraction techniques. These will study the proteins while they are making the particles, so we can identify which parts of the proteins are responsible for the control over formation. With this information we will develop a combined chemical/biological method of making nanomagnetic particles. The new method will combine the benefits of the precision offered by biomineralisation, with the higher yields and more malleable system with respect to variation, offered by chemical synthesis. Furthermore, once the specific role of each protein has been ascertained, particles can be designed and custom-made with the addition of a recipe of the specific proteins and metal ions. This will offer more control over the particles' characteristics than the biological system. This biomimetic synthetic method will allow for the production of particles on a larger, and more commercially viable, scale than if the bacteria alone were used.
近年来,人们对纳米技术的科学和经济兴趣有所增长。在这其中,制造微小且高度定制的磁性颗粒或纳米磁铁的探索至关重要。纳米磁铁有一系列的实际用途。从历史上看,它们被用于磁带和硬盘等信息存储。最近,随着提供高密度数据存储的3D信息存储系统的发展,这一点已经扩大。纳米磁铁在医学上的应用也引起了人们的极大兴趣。人们正在开发磁性颗粒,以便在体内提供靶向药物。例如,如果药物在分子水平上与纳米磁铁捆绑在一起,那么它们可以通过磁铁定向到患者体内的特定位置。这使得药物可以被输送到特定的区域,而不会损害身体的其他部分。同样,纳米磁铁也可以用于热疗。在这里,磁性颗粒被定向到特定的肿瘤部位后,被加热以摧毁肿瘤或激活药物。然而,随着纳米技术的发展,开发精确设计的纳米磁铁的需求也在增加。不同的应用需要不同形状和大小的颗粒以及不同的磁性。因此,控制纳米磁铁的组成和尺寸已成为研究人员的一个关键目标。生物矿化是发生在生物体内产生骨骼等矿物质的过程。因为基因控制着生物矿化过程,所以产生的材料表现出非常精确、均匀和复杂的结构,精确到纳米级。此外,如果了解了遗传学,就有可能精确地改变生物矿化材料的性质。趋磁细菌在细菌细胞(称为磁小体)的生物脂肪壳(或小泡)内对高质量和均匀的氧化铁磁铁矿纳米颗粒进行生物矿化。由于磁小体表现出相当的均匀性和精确度,它们为制备高质量的纳米粒子提供了一条新颖而有吸引力的途径。然而,生物矿化方法对于商业生产可能效率低下,并且受到细菌细胞强加的规格的限制,几乎没有进一步修改的灵活性。在细菌中发现的一种参与制造纳米磁铁的蛋白质之前已经被提取出来,并大量生产(表达)并用于磁性粒子的化学沉淀。这种蛋白质被发现可以控制颗粒的大小和形状,即使在细菌细胞外的这种化学产物中也是如此。这项研究将从我们拥有的关于磁性细菌的遗传信息中识别生物矿化蛋白,并通过表达这些蛋白并将其用于纳米颗粒的化学形成,类似于前一项研究。由此,我们将详细研究蛋白质如何使用显微镜、光谱和衍射技术来物理控制颗粒的大小和形状。他们将在制造颗粒的过程中研究蛋白质,这样我们就可以确定蛋白质的哪些部分负责控制形成。有了这些信息,我们将开发一种化学/生物相结合的方法来制造纳米磁性颗粒。新方法将结合生物矿化提供的精确度和化学合成提供的更高产量和更具延展性的系统的优点。此外,一旦确定了每种蛋白质的特定作用,就可以通过添加特定蛋白质和金属离子的配方来设计和定制颗粒。与生物系统相比,这将提供对颗粒特性的更多控制。与单独使用细菌相比,这种仿生合成方法将允许以更大的规模和更具商业可行性的规模生产颗粒。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Innovation through imitation: biomimetic, bioinspired and biokleptic research
通过模仿进行创新:仿生、仿生和仿生研究
- DOI:10.1039/c2sm25385b
- 发表时间:2012
- 期刊:
- 影响因子:3.4
- 作者:Rawlings A
- 通讯作者:Rawlings A
Macrofluidic Coaxial Flow Platforms to Produce Tunable Magnetite Nanoparticles: A Study of the Effect of Reaction Conditions and Biomineralisation Protein Mms6.
用于生产可调磁铁矿纳米颗粒的宏流体同轴流平台:反应条件和生物矿化蛋白 Mms6 影响的研究。
- DOI:10.3390/nano9121729
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Norfolk L
- 通讯作者:Norfolk L
Nanomagnetic Arrays Formed with the Biomineralization Protein Mms6
- DOI:10.4028/www.scientific.net/jnanor.17.127
- 发表时间:2012-02
- 期刊:
- 影响因子:1.7
- 作者:J. M. Galloway;J. P. Bramble;Andrea E. Rawlings;G. Burnell;S. Evans;Sarah S. Staniland
- 通讯作者:J. M. Galloway;J. P. Bramble;Andrea E. Rawlings;G. Burnell;S. Evans;Sarah S. Staniland
Reply to the 'Comment on "Innovation through imitation: Biomimetic, bioinspired and biokleptic research"' by M. Drack and I. C. Gebeshuber, Soft Matter, 2013, 9, DOI: 10.1039/c2sm26722e
回复 M. Drack 和 I. C. Gebeshuber 对“通过模仿进行创新:仿生、生物启发和生物抑制研究”的评论,Soft Matter,2013 年,9,DOI:10.1039/c2sm26722e
- DOI:10.1039/c2sm27271g
- 发表时间:2013
- 期刊:
- 影响因子:3.4
- 作者:Rawlings A
- 通讯作者:Rawlings A
Protein and peptide biotemplated metal and metal oxide nanoparticles and their patterning onto surfaces
- DOI:10.1039/c2jm31620j
- 发表时间:2012-01-01
- 期刊:
- 影响因子:0
- 作者:Galloway, Johanna M.;Staniland, Sarah S.
- 通讯作者:Staniland, Sarah S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Staniland其他文献
An accommodating host
好客的主人
- DOI:
10.1038/nnano.2014.45 - 发表时间:
2014-02-23 - 期刊:
- 影响因子:34.900
- 作者:
Sarah Staniland - 通讯作者:
Sarah Staniland
Nanoparticle biosynthesis: An accommodating host.
纳米颗粒生物合成:适应性宿主。
- DOI:
10.1038/nnano.2014.45 - 发表时间:
2014 - 期刊:
- 影响因子:38.3
- 作者:
Sarah Staniland - 通讯作者:
Sarah Staniland
Biomagnetic Recovery of Selenium: Bioaccumulating of Selenium Granules in Magnetotactic Bacteria
硒的生物磁回收:趋磁细菌中硒颗粒的生物富集
- DOI:
10.1128/aem.00508-16 - 发表时间:
2016 - 期刊:
- 影响因子:4.4
- 作者:
Masayoshi Tanaka;William Knowles;Rosemary Brown;Nicole Hondow;Atsushi Arakaki;Stephen Baldwin;Sarah Staniland;Tadashi Matsunaga - 通讯作者:
Tadashi Matsunaga
Biomagnetic recovery and bioaccumulation of selenium granules in magnetotactic bacteria
趋磁细菌中硒颗粒的生物磁回收和生物富集
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:4.4
- 作者:
Masayoshi Tanaka;William Knowles;Rosemary Brown;Nicole Hondow;Atsushi Arakaki;Stephen Baldwin;Sarah Staniland;Tadashi Matsunaga - 通讯作者:
Tadashi Matsunaga
Multi-scale Modeling for Life-Cycle Management of Concrete Structures
混凝土结构生命周期管理的多尺度建模
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Masayoshi Tanaka;William Knowles;Rosemary Brown;Nicole Hondow;Atsushi Arakaki;Stephen Baldwin;Sarah Staniland;Tadashi Matsunaga;前川宏一 - 通讯作者:
前川宏一
Sarah Staniland的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Staniland', 18)}}的其他基金
Magnetite synthesis in biomimietic nanovesicles: innovative synthetic routes to tailored bio-nanomagnets
仿生纳米囊泡中的磁铁矿合成:定制生物纳米磁体的创新合成路线
- 批准号:
EP/I032355/2 - 财政年份:2013
- 资助金额:
$ 73.49万 - 项目类别:
Research Grant
Physical investigation and understanding of biomineralisation proteins and their use for the synthesis of new nanomaterials
生物矿化蛋白质的物理研究和理解及其在合成新纳米材料中的用途
- 批准号:
BB/H005412/2 - 财政年份:2013
- 资助金额:
$ 73.49万 - 项目类别:
Research Grant
Magnetite synthesis in biomimietic nanovesicles: innovative synthetic routes to tailored bio-nanomagnets
仿生纳米囊泡中的磁铁矿合成:定制生物纳米磁体的创新合成路线
- 批准号:
EP/I032355/1 - 财政年份:2011
- 资助金额:
$ 73.49万 - 项目类别:
Research Grant
相似海外基金
Structural understanding of 7SK-snRNP mediated transcriptional regulation
7SK-snRNP 介导的转录调控的结构理解
- 批准号:
10583647 - 财政年份:2023
- 资助金额:
$ 73.49万 - 项目类别:
Understanding the effects of a family preservation program for parents with intellectual disability
了解家庭保护计划对智力障碍父母的影响
- 批准号:
10573666 - 财政年份:2023
- 资助金额:
$ 73.49万 - 项目类别:
Understanding how social interactions influence reward-seeking behaviors: Developmental mechanisms
了解社交互动如何影响寻求奖励的行为:发展机制
- 批准号:
10716898 - 财政年份:2023
- 资助金额:
$ 73.49万 - 项目类别:
Improving our understanding of breast cancer mortality disparities through recurrence: a multi-level approach among women in Georgia
通过复发提高我们对乳腺癌死亡率差异的理解:格鲁吉亚妇女的多层次方法
- 批准号:
10818726 - 财政年份:2023
- 资助金额:
$ 73.49万 - 项目类别:
Understanding and optimizing antibody-based interventions against neonatal HSV infection
了解和优化针对新生儿 HSV 感染的抗体干预措施
- 批准号:
10752835 - 财政年份:2023
- 资助金额:
$ 73.49万 - 项目类别:
Understanding pathogen and host determinants of the natural history of N. gonorrhoeae infection
了解淋病奈瑟菌感染自然史的病原体和宿主决定因素
- 批准号:
10703733 - 财政年份:2023
- 资助金额:
$ 73.49万 - 项目类别:
Understanding the relationship between nurse staffing and outcomes: impact of individual nurse education, expertise, and effort level on individual patient outcomes
了解护士人员配置与结果之间的关系:护士个体教育、专业知识和努力水平对个体患者结果的影响
- 批准号:
10642570 - 财政年份:2023
- 资助金额:
$ 73.49万 - 项目类别:
Understanding the structural mechanism of spontaneous ubiquitin cargo clustering on the cell plasma membrane
了解细胞质膜上自发泛素货物聚集的结构机制
- 批准号:
10730734 - 财政年份:2023
- 资助金额:
$ 73.49万 - 项目类别:
Towards a Quantum-Mechanical Understanding of Redox Chemistry in Proteins
对蛋白质氧化还原化学的量子力学理解
- 批准号:
10606459 - 财政年份:2023
- 资助金额:
$ 73.49万 - 项目类别:
Understanding the Role of GARP Proteins in Rod Outer Segment Disc Formation and Retinal Degeneration
了解 GARP 蛋白在视杆外节盘形成和视网膜变性中的作用
- 批准号:
10748725 - 财政年份:2023
- 资助金额:
$ 73.49万 - 项目类别: