Correlation of immunogenicity with microarray analysis of vector mutants to improve live recombinant poxvirus vaccines in poultry
免疫原性与载体突变体微阵列分析的相关性以改进家禽重组痘病毒活疫苗
基本信息
- 批准号:BB/H007016/1
- 负责人:
- 金额:$ 72.62万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
How can we improve the development of better new vaccines to protect poultry (and other livestock) against major disease threats such as bird flu? Genetic manipulation (GM) is having an increasing beneficial impact on our lives, particularly in human and veterinary health care; nowhere more so than in vaccines, where many commercial products have been licensed and released for use in livestock and companion animals. These new vaccines are based on 'vectors', which can be regarded as carriers for the target vaccine, and are generally based on well-understood vaccines, such as poxviruses, with a long history of safe use against important diseases. The best-known example is Vaccinia virus, used in the only successful global eradication of a virus disease, Smallpox, and as a recombinant in the elimination of feral fox rabies from Belgium and France. Fowlpox virus vaccination since the 1920s has effectively eliminated fowlpox from poultry in developed countries in temperate climates. Spread by biting insects, it remains a major problem in tropical and sub-tropical countries where vaccination of chicks in hatcheries is common and extensive. Using GM, we can incorporate into the 'genome' (or chromosome) of the vector, a gene from a different disease-causing virus (or pathogen), such as bird flu H5N1, making a 'recombinant vector'. When that gene carries the instructions to make a structural protein of the pathogen, vaccination with the recombinant vector will induce an immune response in the vaccinated animal against the pathogen (and vector). Recombinant poxviruses have been licensed for veterinary use against West Nile fever, canine distemper, feral rabies and equine influenza. The most extensively used is a commercial recombinant fowlpox vector incorporating the H5 surface spike of bird flu. Two billion doses have been used to vaccinate poultry against H5 bird flu in Mexico since '95. There, the lethal form of bird flu was eradicated but a less dangerous form remained in circulation. The recombinant vaccine reduces shedding and transmission of bird flu but does not completely prevent infection of birds, possibly driving evolution of the virus by random mutation. There, therefore, remains considerable scope for improvement, particularly in terms of immunity that will clear birds of infection. The vectors are not just inert delivery systems. Poxviruses activate the immune system and have to survive in the presence of the host's immune response. To do so, the vector deploys tens of different gene products. Some of these will reduce the effectiveness of the vector as a recombinant vaccine. To improve the response we can use GM to remove such genes from the vector but, with so many candidates, our problem is identifying those which should be removed. Currently the only way to see if the vaccine has been improved is to test it in animals. We propose to look in detail our panel of fowlpox virus mutants, each defective in just 1 of the 250 genes of the vector. When the vector enters a host cell, it turns up (or down) the production of protein from about 1000 of the host's 30000 genes. We will look to see how the different mutations affect the control of these host genes by the vector virus, using the microarray technique (performed in tissue culture dishes in the laboratory). In this study, we will also need to see how each mutation affects the ability of the recombinant vector to induce an immune response (against structural proteins of H5N1 in chickens). We will then look for correlation between improved immune responses to the recombinant vector and changes in control of the host genes by the vector. This should then give us a profile, or a fingerprint, of gene control that we can associate with improved vaccines. In future, we would look for this profile in the laboratory as a first step. This will give us a way of predicting which new vaccines are likely to be improved, before testing them in animals.
我们如何才能更好地开发新疫苗,以保护家禽(和其他牲畜)免受禽流感等重大疾病的威胁?基因操作(GM)对我们的生活产生了越来越多的有益影响,特别是在人类和兽医保健方面;尤其是在疫苗方面,其中许多商业产品已被许可并发布用于牲畜和伴侣动物。这些新疫苗基于“载体”,可被视为目标疫苗的载体,并且通常基于众所周知的疫苗,例如痘病毒,具有针对重要疾病的长期安全使用历史。最著名的例子是牛痘病毒,它被用于全球唯一成功根除天花病毒病,并作为一种重组体用于消除比利时和法国的野生狐狸狂犬病。自20世纪20年代以来,鸡痘病毒疫苗接种在温带气候的发达国家有效地消除了家禽中的鸡痘。通过叮咬昆虫传播,它仍然是热带和亚热带国家的一个主要问题,在这些国家,孵化场的雏鸡接种疫苗是普遍和广泛的。使用转基因技术,我们可以将来自不同致病病毒(或病原体)(如禽流感H5 N1)的基因整合到载体的“基因组”(或染色体)中,制造“重组载体”。当该基因携带制造病原体的结构蛋白的指令时,用重组载体接种疫苗将在接种疫苗的动物中诱导针对病原体(和载体)的免疫应答。重组痘病毒已被批准用于兽医防治西尼罗河热、犬瘟热、狂犬病和马流感。最广泛使用的是一种商业重组禽痘载体,其中包含禽流感的H5表面刺突。自1995年以来,墨西哥已经用了20亿剂疫苗给家禽接种H5禽流感疫苗。在那里,致命的禽流感被根除,但一种危险性较低的禽流感仍在流通。重组疫苗减少了禽流感的散发和传播,但并不能完全预防鸟类的感染,可能通过随机突变推动病毒进化。因此,仍有相当大的改进余地,特别是在免疫力方面,这将清除鸟类的感染。载体不仅仅是惰性的传递系统。痘病毒激活免疫系统,并且必须在宿主的免疫应答存在下存活。为此,载体部署了数十种不同的基因产物。其中一些将降低载体作为重组疫苗的有效性。为了改善反应,我们可以使用GM从载体中删除这些基因,但是,有这么多候选基因,我们的问题是确定那些应该删除的基因。目前,唯一的方法来看看疫苗是否已经改进是在动物身上测试。我们建议详细研究我们的鸡痘病毒突变体组,每个突变体在载体的250个基因中只有1个有缺陷。当载体进入宿主细胞时,它会提高(或降低)宿主细胞30000个基因中约1000个基因的蛋白质产量。我们将使用微阵列技术(在实验室的组织培养皿中进行)来观察不同的突变如何影响载体病毒对这些宿主基因的控制。在这项研究中,我们还需要了解每个突变如何影响重组载体诱导免疫应答(针对鸡体内H5 N1结构蛋白)的能力。然后,我们将寻找对重组载体的改善的免疫应答与载体对宿主基因控制的变化之间的相关性。这应该会给我们一个基因控制的图谱,或者指纹,我们可以把它和改进的疫苗联系起来。在未来,我们将在实验室中寻找这一概况作为第一步。这将给我们一种方法,在动物试验之前,预测哪些新疫苗可能会得到改进。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Colin Butter其他文献
Cloning and Characterisation of the Chicken Orthologue of Dendritic Cell-lysosomal Associated Membrane Protein (dc- Lamp) Cloning and Characterisation of the Chicken Orthologue of Dendritic Cell-lysosomal Associated Membrane Protein (dc-lamp)
树突细胞-溶酶体相关膜蛋白鸡直系同源物 (dc-Lamp) 的克隆和表征 树突细胞-溶酶体相关膜蛋白鸡直向同源物 (dc-lamp) 的克隆和表征
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
C. Wu;Kaiser;Zhiguang Wu;Tuanjun Hu;Colin Butter;Pete Kaiser - 通讯作者:
Pete Kaiser
Chicken class II DMA and DMB are similar to mammals, but a second DMB gene differs in expression level, regulation and structural features
- DOI:
10.1016/j.molimm.2012.02.072 - 发表时间:
2012-05-01 - 期刊:
- 影响因子:
- 作者:
Aimée Parker;Colin Butter;Karen Staines;Jim Kaufman - 通讯作者:
Jim Kaufman
Expression of Chicken DEC205 Reflects the Unique Structure and Function of the Avian Immune System
鸡DEC205的表达反映了禽类免疫系统的独特结构和功能
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:3.7
- 作者:
Karen A. Staines;John R. Young;Colin Butter - 通讯作者:
Colin Butter
Colin Butter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Colin Butter', 18)}}的其他基金
The Immunology of Poultry Vaccination
家禽疫苗免疫学
- 批准号:
BB/H531427/1 - 财政年份:2010
- 资助金额:
$ 72.62万 - 项目类别:
Research Grant
Viral & host immunomodulators in improved Fowlpox virus recombinant vector vaccines for use in poultry against highly pathogenic avian influenza H5N1.
病毒性的
- 批准号:
BB/H531294/1 - 财政年份:2009
- 资助金额:
$ 72.62万 - 项目类别:
Research Grant
Viral & host immunomodulators in improved Fowlpox virus recombinant vector vaccines for use in poultry against highly pathogenic Avian Influenza H5N1
病毒性的
- 批准号:
BB/E009611/1 - 财政年份:2009
- 资助金额:
$ 72.62万 - 项目类别:
Research Grant
Virus transmission dynamics and the immune response of birds to avian influenza.
病毒传播动力学和鸟类对禽流感的免疫反应。
- 批准号:
BB/E011691/1 - 财政年份:2009
- 资助金额:
$ 72.62万 - 项目类别:
Research Grant
Virus transmission dynamics and the immune response of birds to avian influenza. THIS GRANT IS A SUPPLEMENTATION TO GRANT REF BB/E011691/1
病毒传播动力学和鸟类对禽流感的免疫反应。
- 批准号:
BB/H531327/1 - 财政年份:2009
- 资助金额:
$ 72.62万 - 项目类别:
Research Grant
相似海外基金
Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
- 批准号:
10724882 - 财政年份:2023
- 资助金额:
$ 72.62万 - 项目类别:
Tracking Peripheral T-Cell Repertoire Changes for Preoperative and Early Ovarian Cancer Diagnosis
追踪外周 T 细胞库的变化以进行术前和早期卵巢癌诊断
- 批准号:
10364443 - 财政年份:2022
- 资助金额:
$ 72.62万 - 项目类别:
Tracking Peripheral T-Cell Repertoire Changes for Preoperative and Early Ovarian Cancer Diagnosis
追踪外周 T 细胞库的变化以进行术前和早期卵巢癌诊断
- 批准号:
10542809 - 财政年份:2022
- 资助金额:
$ 72.62万 - 项目类别:
Tracking Peripheral T-Cell Repertoire Changes for Preoperative and Early Ovarian Cancer Diagnosis
追踪外周 T 细胞库的变化以进行术前和早期卵巢癌诊断
- 批准号:
10906611 - 财政年份:2022
- 资助金额:
$ 72.62万 - 项目类别:
Identification of bactericidal antibody specificities for the development of novel broad-coverage vaccine candidates against Neisseria meningitidis
鉴定杀菌抗体特异性,用于开发针对脑膜炎奈瑟菌的新型广泛覆盖候选疫苗
- 批准号:
10404598 - 财政年份:2021
- 资助金额:
$ 72.62万 - 项目类别:
Immunomodulatory Effects of Targeting DNA Repair with Novel Temozolomide Combinations in Colorectal Cancer
新型替莫唑胺组合靶向 DNA 修复对结直肠癌的免疫调节作用
- 批准号:
10462786 - 财政年份:2021
- 资助金额:
$ 72.62万 - 项目类别:
Immunomodulatory Effects of Targeting DNA Repair with Novel Temozolomide Combinations in Colorectal Cancer
新型替莫唑胺组合靶向 DNA 修复对结直肠癌的免疫调节作用
- 批准号:
10675088 - 财政年份:2021
- 资助金额:
$ 72.62万 - 项目类别:
Identification of bactericidal antibody specificities for the development of novel broad-coverage vaccine candidates against Neisseria meningitidis
鉴定杀菌抗体特异性,用于开发针对脑膜炎奈瑟菌的新型广泛覆盖候选疫苗
- 批准号:
10256250 - 财政年份:2021
- 资助金额:
$ 72.62万 - 项目类别:
Immunomodulatory Effects of Targeting DNA Repair with Novel Temozolomide Combinations in Colorectal Cancer
新型替莫唑胺组合靶向 DNA 修复对结直肠癌的免疫调节作用
- 批准号:
10301255 - 财政年份:2021
- 资助金额:
$ 72.62万 - 项目类别:
Glycosylation and Immune Evasion in Urologic Tumors
泌尿系统肿瘤中的糖基化和免疫逃避
- 批准号:
10394718 - 财政年份:2019
- 资助金额:
$ 72.62万 - 项目类别: