An enduring pipeline to identify and utilize durable late blight disease resistance in potato

识别和利用马铃薯持久晚疫病抗性的持久管道

基本信息

  • 批准号:
    BB/H018697/1
  • 负责人:
  • 金额:
    $ 50.68万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

Phytophthora infestans causes late blight, the most devastating disease of potato which is the world's third most important food crop. Consequently, late blight is a threat to global food security. Recently, we have witnessed a dramatic shift in the European P. infestans population, which is now dominated by an aggressive strain that overcomes many resistances, including that deployed in the number one organic potato, Lady Balfour. Moreover, many pesticides that farmers rely on to prevent late blight may soon be banned in the EU. Agriculture and science must respond to rapid pathogen population changes to secure food supply with minimal impact on natural resources. This project aims to provide a powerful and enduring pipeline, driven by understanding pathogen population dynamics, to exploit naturally existing biodiversity in wild Solanum species, and rapidly identify and deploy durable late blight resistance (Rpi) genes. The genome sequence of P. infestans is very large, 74% of which is non-coding DNA repeats. It has revealed more than 500 candidate virulence genes encoding effector proteins with an amino acid motif (RXLR) required for their movement into plant cells. All P. infestans effectors recognised by potato Rpi proteins found so far contain this delivery motif. RXLR genes are located in regions of repetitive DNA, which may be subject to higher rates of evolution, perhaps explaining why this pathogen has so readily overcome deployed resistances. Our first key objective aims to identify, using microarray gene expression profiling, a 'core set' of RXLRs that are actively used for infection by a diverse worldwide collection of P. infestans strains, including those currently threatening European crops. Such universally-expressed RXLRs provide 'targets' for resistances that are more likely to be durable. By sequencing these core RXLRs from the diverse strains, we will reveal variant forms which may have evolved to evade resistance. The core set of RXLRs, and variant forms of their sequences, will be used to screen for potentially durable late blight resistance. A large collection of wild potato relatives is maintained at SCRI, providing a living library of genetic variation to seek durable Rpi genes from the >180 candidates in the potato genome. This collection and previously identified resistant species will be screened with diverse contemporary P. infestans isolates. Genetic crosses involving this resistant germplasm will be screened for responses to core RXLRs, seeking correspondence in segregation between resistance and effector recognition. Durability of resistance will be assessed by screening with core RXLR allelic variants. Next-generation sequencing and DNA capture array technologies will be used to rapidly identify candidate Rpi genes specifically from resistant offspring in genetic crosses. Rpi candidates will be expressed in susceptible plants, and tested for their ability to convey resistance to P. infestans. Durable Rpi genes will provide markers to more rapidly breed them into modern potato cultivars within the SCRI mutlitrait breeding programme. Moreover, cloned Rpi genes can be introduced into commercially important potato and tomato cultivars using transgenic technology. We will seek to actively engage with the public to discuss perceptions of GMOs. This project provides a collaborative platform and strategy to yield novel, durable Rpi genes as markers for accelerated breeding, and as genes that could be deployed transgenically in finished cultivars. To defeat the high evolutionary potential of P. infestans, many Rpi genes may be needed and these must be rapidly and appropriately deployed as we detect changes in the P. infestans population. We thus envisage an Rpi discovery pipeline that will continue to exploit the potato biodiversity at our disposal beyond the completion of this project.
马铃薯晚疫病是世界上第三大粮食作物马铃薯上最具破坏性的病害。因此,晚疫病是对全球粮食安全的威胁。最近,我们目睹了欧洲马铃薯晚疫病菌种群的巨大变化,现在由一种侵略性菌株主导,这种菌株克服了许多抗性,包括在头号有机马铃薯Lady Balfour中部署的抗性。此外,农民用来预防晚疫病的许多农药可能很快在欧盟被禁止。农业和科学必须应对病原体种群的快速变化,以确保粮食供应,同时尽量减少对自然资源的影响。该项目旨在通过了解病原体种群动态,提供一个强大而持久的管道,以利用野生茄属物种中自然存在的生物多样性,并快速识别和部署持久的晚疫病抗性(Rpi)基因。致病疫霉的基因组序列非常大,其中74%是非编码DNA重复序列。它已经揭示了500多个候选毒力基因编码的效应蛋白与氨基酸基序(RXLR)所需的运动到植物细胞。迄今发现的马铃薯Rpi蛋白识别的所有致病疫霉效应子都含有该递送基序。RXLR基因位于重复DNA的区域,这可能会受到更高的进化率,也许可以解释为什么这种病原体如此容易克服部署的抗性。我们的第一个关键目标旨在使用微阵列基因表达谱来识别RXLR的“核心集”,这些RXLR被广泛收集的世界范围内的致病疫霉菌株(包括目前威胁欧洲作物的菌株)积极用于感染。这种普遍表达的RXLR为更可能持久的抗性提供了“靶标”。通过对来自不同菌株的这些核心RXLR进行测序,我们将揭示可能为逃避耐药性而进化的变体形式。RXLR的核心组及其序列的变体形式将用于筛选潜在持久的晚疫病抗性。SCRI保存了大量的野生马铃薯近缘种,提供了一个遗传变异的活文库,以从马铃薯基因组中的>180个候选者中寻找持久的Rpi基因。将使用不同的当代致病疫霉分离株筛选该收集物和先前鉴定的耐药种属。将筛选涉及该抗性种质的遗传杂交对核心RXLR的反应,寻求抗性和效应子识别之间分离的对应关系。将通过用核心RXLR等位基因变体筛选来评估耐药性的持久性。下一代测序和DNA捕获阵列技术将用于快速鉴定候选Rpi基因,特别是从遗传杂交中的抗性后代中。Rpi候选物将在易感植物中表达,并测试其传递对致病疫霉的抗性的能力。持久的Rpi基因将提供标记,以便在SCRI多品种育种计划中更快地将它们培育成现代马铃薯品种。此外,可以使用转基因技术将克隆的Rpi基因引入商业上重要的马铃薯和番茄栽培品种中。我们将寻求积极与公众接触,讨论对转基因生物的看法。该项目提供了一个合作平台和策略,以产生新的,持久的Rpi基因作为标记,加速育种,并作为基因,可以转基因部署在成品品种。为了击败致病疫霉的高进化潜力,可能需要许多Rpi基因,并且当我们检测到致病疫霉种群中的变化时,必须快速且适当地部署这些基因。因此,我们设想了一个RPI发现管道,该管道将在该项目完成后继续利用我们所掌握的马铃薯生物多样性。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identifying and classifying trait linked polymorphisms in non-reference species by walking coloured de bruijn graphs.
  • DOI:
    10.1371/journal.pone.0060058
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Leggett RM;Ramirez-Gonzalez RH;Verweij W;Kawashima CG;Iqbal Z;Jones JD;Caccamo M;Maclean D
  • 通讯作者:
    Maclean D
Identification and localisation of the NB-LRR gene family within the potato genome.
  • DOI:
    10.1186/1471-2164-13-75
  • 发表时间:
    2012-02-15
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Jupe F;Pritchard L;Etherington GJ;Mackenzie K;Cock PJ;Wright F;Sharma SK;Bolser D;Bryan GJ;Jones JD;Hein I
  • 通讯作者:
    Hein I
Relocalization of Late Blight Resistance Protein R3a to Endosomal Compartments Is Associated with Effector Recognition and Required for the Immune Response
  • DOI:
    10.1105/tpc.112.104992
  • 发表时间:
    2012-12-01
  • 期刊:
  • 影响因子:
    11.6
  • 作者:
    Engelhardt, Stefan;Boevink, Petra C.;Birch, Paul R. J.
  • 通讯作者:
    Birch, Paul R. J.
Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations.
  • DOI:
    10.1111/tpj.12307
  • 发表时间:
    2013-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jupe F;Witek K;Verweij W;Sliwka J;Pritchard L;Etherington GJ;Maclean D;Cock PJ;Leggett RM;Bryan GJ;Cardle L;Hein I;Jones JD
  • 通讯作者:
    Jones JD
Detection of the virulent form of AVR3a from Phytophthora infestans following artificial evolution of potato resistance gene R3a.
  • DOI:
    10.1371/journal.pone.0110158
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Chapman S;Stevens LJ;Boevink PC;Engelhardt S;Alexander CJ;Harrower B;Champouret N;McGeachy K;Van Weymers PS;Chen X;Birch PR;Hein I
  • 通讯作者:
    Hein I
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Birch其他文献

Target Value-Tailored Apheresis Can Improve Prediction of Product Hematopoietic Progenitor Cells Prior to Autologous Transplantation
  • DOI:
    10.1016/j.bbmt.2013.12.174
  • 发表时间:
    2014-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dawn Sheppard;Jason Tay;Lothar Huebsch;Sheryl Ann McDiarmid;Lisa Gilliard Martin;Doug Palmer;Paul Birch;Anargyros Xenocostas;Linda Hamelin;Christopher N. Bredeson
  • 通讯作者:
    Christopher N. Bredeson
Improved Prediction of CD34<sup>+</sup> Cell Yield before Peripheral Blood Hematopoietic Progenitor Cell Collection Using a Modified Target Value–Tailored Approach
  • DOI:
    10.1016/j.bbmt.2015.11.016
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dawn Sheppard;Jason Tay;Douglas Palmer;Anargyros Xenocostas;Christina Doulaverakis;Lothar Huebsch;Sheryl McDiarmid;Alan Tinmouth;Ranjeeta Mallick;Lisa Martin;Paul Birch;Linda Hamelin;David Allan;Christopher Bredeson
  • 通讯作者:
    Christopher Bredeson

Paul Birch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Birch', 18)}}的其他基金

MARVEL-ous Extracellular vesicles carry RXLR effectors into host plant cells
MARVEL-ous 细胞外囊泡携带 RXLR 效应子进入宿主植物细胞
  • 批准号:
    BB/Y002067/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.68万
  • 项目类别:
    Research Grant
Phosphatidylinositides defining effector protein delivery in Phytophthora
磷脂酰肌醇定义了疫霉菌中效应蛋白的传递
  • 批准号:
    BB/X014800/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50.68万
  • 项目类别:
    Research Grant
New Zealand partnering award: Pathogenesis and effector delivery in Phytophthora infections of woody host plants
新西兰合作奖:木本宿主植物疫霉感染的发病机制和效应物传递
  • 批准号:
    BB/T020164/1
  • 财政年份:
    2021
  • 资助金额:
    $ 50.68万
  • 项目类别:
    Research Grant
The roles of extracellular vesicle transport in late blight disease development
细胞外囊泡运输在晚疫病发展中的作用
  • 批准号:
    BB/S003096/1
  • 财政年份:
    2019
  • 资助金额:
    $ 50.68万
  • 项目类别:
    Research Grant
Defining and deploying Rpi gene diversity in S. americanum to control late blight in potato
定义和部署美洲美洲蝽 Rpi 基因多样性以控制马铃薯晚疫病
  • 批准号:
    BB/P019595/1
  • 财政年份:
    2018
  • 资助金额:
    $ 50.68万
  • 项目类别:
    Research Grant
New approaches to undermine late blight disease by exploiting an understanding of ubiquitin E3 ligases that positively regulate immunity
利用对积极调节免疫的泛素 E3 连接酶的了解,开发出消灭晚疫病的新方法
  • 批准号:
    BB/P020569/1
  • 财政年份:
    2017
  • 资助金额:
    $ 50.68万
  • 项目类别:
    Research Grant
Undermining effector-targeted susceptibility factors to provide late blight resistance
破坏效应子靶向的易感因子以提供晚疫病抗性
  • 批准号:
    BB/N009967/1
  • 财政年份:
    2016
  • 资助金额:
    $ 50.68万
  • 项目类别:
    Research Grant
UK-China partnership to develop durable late blight disease resistance in potato
中英合作开发马铃薯持久的晚疫病抗性
  • 批准号:
    BB/L026880/1
  • 财政年份:
    2014
  • 资助金额:
    $ 50.68万
  • 项目类别:
    Research Grant
Controlling important diseases in potato by cloning functional NB-LRR-type resistance genes
克隆功能性NB-LRR型抗性基因防治马铃薯重要病害
  • 批准号:
    BB/L01050X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 50.68万
  • 项目类别:
    Research Grant
The Contribution of Phytophthora effectors to host range and non-host resistance
疫霉效应子对寄主范围和非寄主抗性的贡献
  • 批准号:
    BB/K018183/1
  • 财政年份:
    2013
  • 资助金额:
    $ 50.68万
  • 项目类别:
    Research Grant

相似国自然基金

基于生成式对抗网络和语义分割检测的管道缺陷自动识别和评估研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
基于InSAR技术的山地天然气管道典型地灾隐患识别与监测预警研究
  • 批准号:
    CSTB2023NSCQ-MSX1059
  • 批准年份:
    2023
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于串联腔体共振的供水管道泄漏声波产生机理与识别方法研究
  • 批准号:
    52300119
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
基于弱光栅阵列和深度学习光纤振动传感的管道损伤识别研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于声波传播特性的海底管道泄漏精确识别与定位研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
复杂噪声下混凝土排水管道相似缺陷智能检测与识别研究
  • 批准号:
    52108289
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于同源涡流漏磁协同探伤的非合作环境油气管道缺陷检测深度识别方法
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
多场耦合作用下覆岩破坏岩溶管道突水机理及预警信息识别
  • 批准号:
    42162022
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
基于多尺度注意力机制的管道漏信号自动检测关键问题研究
  • 批准号:
    62003224
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
综合管廊内燃气管道泄漏超声的定位识别机理及关键技术研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

A precision medicine approach to identify walking phenotypes and rehabilitation targets after injury
一种识别步行表型和受伤后康复目标的精准医学方法
  • 批准号:
    10662525
  • 财政年份:
    2022
  • 资助金额:
    $ 50.68万
  • 项目类别:
Using Machine Learning with Real-World Data to Identify Autism Risk in Children
使用机器学习和真实世界数据来识别儿童自闭症风险
  • 批准号:
    10591514
  • 财政年份:
    2022
  • 资助金额:
    $ 50.68万
  • 项目类别:
Using Machine Learning with Real-World Data to Identify Autism Risk in Children
使用机器学习和真实世界数据来识别儿童自闭症风险
  • 批准号:
    10430153
  • 财政年份:
    2022
  • 资助金额:
    $ 50.68万
  • 项目类别:
AI-assisted behavioral profiling of an invertebrate model to identify new psychedelic therapeutics for stimulant use disorders
人工智能辅助无脊椎动物模型的行为分析,以确定兴奋剂使用障碍的新迷幻疗法
  • 批准号:
    10467072
  • 财政年份:
    2022
  • 资助金额:
    $ 50.68万
  • 项目类别:
US Partnering Award: Developing a comparative transcriptomic pipeline to identify novel models of human retinal ageing
美国合作奖:开发比较转录组学流程来识别人类视网膜衰老的新模型
  • 批准号:
    BB/V018078/1
  • 财政年份:
    2021
  • 资助金额:
    $ 50.68万
  • 项目类别:
    Research Grant
Bio-digital Rapid Alert to Identify Neuromorbidity
识别神经疾病的生物数字快速警报
  • 批准号:
    10676895
  • 财政年份:
    2021
  • 资助金额:
    $ 50.68万
  • 项目类别:
Development of a high-throughput pipeline to identify causal variants and its demonstration in pig muscle
开发高通量管道来识别因果变异及其在猪肌肉中的演示
  • 批准号:
    BB/T014067/1
  • 财政年份:
    2021
  • 资助金额:
    $ 50.68万
  • 项目类别:
    Research Grant
Bio-digital Rapid Alert to Identify Neuromorbidity
识别神经疾病的生物数字快速警报
  • 批准号:
    10456945
  • 财政年份:
    2021
  • 资助金额:
    $ 50.68万
  • 项目类别:
An in vivo screen for genes underlying protective neonate respiratory reflexes to identify potential contributors to Sudden Infant Death Syndrome and other congenital respiratory pathophysiologies
体内筛选保护性新生儿呼吸反射的基因,以确定婴儿猝死综合症和其他先天性呼吸病理生理学的潜在因素
  • 批准号:
    10342442
  • 财政年份:
    2021
  • 资助金额:
    $ 50.68万
  • 项目类别:
Microstructural MRI Microscopy of Post-mortem Specimens to Identify and Improve Markers of Alzheimer's Disease Pathology
尸检标本的微结构 MRI 显微镜可识别和改善阿尔茨海默病病理学标志物
  • 批准号:
    10190347
  • 财政年份:
    2021
  • 资助金额:
    $ 50.68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了