How do H2A.Z-nucleosomes control the temperature transcriptome?
H2A.Z-核小体如何控制转录组温度?
基本信息
- 批准号:BB/I013350/1
- 负责人:
- 金额:$ 64.59万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
All living things are sensitive to their temperature. Mammals like ourselves have evolved ways to keep their body temperature fairly constant, and this ensures that our cells can work at their full efficiency. During fever though, our body temperature rises, and during hibernation, animals allow their temperature to drop to very low levels, so even mammals have significant variation in their temperature. Although we have known how important temperature is for life for hundreds of years, how temperature is sensed is not clearly understood. Plants often cannot prevent large fluctuations in their temperature, and they have evolved very sophisticated ways to measure temperature, and adjust the behaviour of their cells to adapt to these changes. Plants are therefore a perfect system to study how higher (non-bacterial) organisms sense temperature. We have found that plants actually change the way their DNA is wrapped when the temperature changes. When temperature increases, plant DNA becomes less tightly packed. This allows genes to be switched on in response to temperature. What we do not know is whether this is a direct effect of temperature on DNA, or is more indirect. In this study, we will determine the mechanism of how this change is controlled, and see if other higher organisms, such as yeast and mammals respond to temperature in the same way. Understanding how temperature is sensed is important because it will help us to create crops that are resilient to climate change. Higher temperatures are particularly damaging to crop yields since they cause the plant to make less grain which is of a poorer quality. For example during the hot summer of 2003, wheat yields in France decreased by about 20 %. The aim of our research is to understand how temperature is sensed well enough that we can breed plants with improved temperature sensing characteristics. In this way it may be possible to create crops that are better able to cope with climate change. Crops have been bred for thousands of years and selected to have a very sensitive response to temperature. While this is normally a good thing, sometimes, for example in the developing grain, it has bad effects on crop yields. If we fully understand the molecules that cause a plant to sense temperature we will be able to alter how different parts of the plant sense and respond to temperature. This would be very valuable, since variation in temperature is a major cause of lost yield in agriculture. Moreover climate change is increasing the severity of temperature shocks, as well as their frequency. Temperature can affect crops in many different ways, for example interfering with crop scheduling by changing flowering time. Some crops are also induced to flower inappropriately (for example lettuces) by temperature changes. Wheat and rice are particularly sensitive to high temperatures during grain filling. Being able to breed crops with optimal temperature responses would enable farmers to be able to grow crops reliably in the face of higher and more variable temperatures. This will be important for sustainability (fewer crops will be lost and yields will be saved) and food security, which will be particularly important in a world of 9 billion people.
所有的生物都对温度敏感。像我们这样的哺乳动物已经进化出了保持体温相当恒定的方法,这确保了我们的细胞可以充分发挥效率。然而,在发烧期间,我们的体温会上升,在冬眠期间,动物会让它们的体温降到非常低的水平,所以即使是哺乳动物,它们的体温也会有很大的变化。虽然我们知道温度对生命的重要性已经有几百年了,但我们对温度是如何被感知的还不清楚。植物通常无法阻止其温度的大幅波动,它们已经进化出非常复杂的方法来测量温度,并调整其细胞的行为以适应这些变化。因此,植物是研究高等生物(非细菌)如何感知温度的完美系统。我们发现,当温度变化时,植物实际上会改变它们的DNA包裹方式。当温度升高时,植物DNA的排列变得不那么紧密。这使得基因能够响应温度而启动。我们不知道的是,这是温度对DNA的直接影响,还是间接影响。在这项研究中,我们将确定这种变化是如何控制的机制,并看看其他高等生物,如酵母和哺乳动物是否以同样的方式对温度作出反应。了解如何感知温度很重要,因为它将帮助我们培育出能够适应气候变化的作物。高温对作物产量的损害特别大,因为它们导致植物生产更少的谷物,质量更差。例如,在2003年炎热的夏季,法国的小麦产量下降了约20%。我们研究的目的是了解温度是如何被足够好地感知的,以便我们可以培育具有改进的温度感知特性的植物。这样就有可能培育出更能科普气候变化的作物。作物已经培育了数千年,并选择对温度非常敏感的反应。虽然这通常是一件好事,但有时,例如在发展中的谷物中,它对作物产量产生了不良影响。如果我们完全了解导致植物感知温度的分子,我们将能够改变植物不同部位对温度的感知和反应。这将是非常有价值的,因为温度的变化是农业产量损失的主要原因。此外,气候变化正在增加温度冲击的严重性及其频率。温度可以以许多不同的方式影响作物,例如通过改变开花时间来干扰作物调度。有些作物也会因温度变化而不适当地开花(例如油菜)。小麦和水稻在灌浆期对高温特别敏感。能够培育出具有最佳温度反应的作物将使农民能够在更高和更多变的温度下可靠地种植作物。这对可持续性(减少作物损失,节约产量)和粮食安全至关重要,这对一个拥有90亿人口的世界尤其重要。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Different mechanisms for Arabidopsis thaliana hybrid necrosis cases inferred from temperature responses.
从温度响应推断拟南芥杂交坏死病例的不同机制。
- DOI:10.1111/plb.12164
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Muralidharan S
- 通讯作者:Muralidharan S
Chloroplast Signaling Gates Thermotolerance in Arabidopsis.
- DOI:10.1016/j.celrep.2018.01.054
- 发表时间:2018-02-13
- 期刊:
- 影响因子:8.8
- 作者:Dickinson PJ;Kumar M;Martinho C;Yoo SJ;Lan H;Artavanis G;Charoensawan V;Schöttler MA;Bock R;Jaeger KE;Wigge PA
- 通讯作者:Wigge PA
Phytochromes function as thermosensors in $\textit{Arabidopsis}$
光敏色素在$ extit{拟南芥}$中充当热传感器
- DOI:10.17863/cam.7172
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Jung J
- 通讯作者:Jung J
Transcriptional Regulation of the Ambient Temperature Response by H2A.Z Nucleosomes and HSF1 Transcription Factors in Arabidopsis.
- DOI:10.1016/j.molp.2017.08.014
- 发表时间:2017-10-09
- 期刊:
- 影响因子:27.5
- 作者:Cortijo S;Charoensawan V;Brestovitsky A;Buning R;Ravarani C;Rhodes D;van Noort J;Jaeger KE;Wigge PA
- 通讯作者:Wigge PA
Ambient temperature signalling in plants.
- DOI:10.1016/j.pbi.2013.08.004
- 发表时间:2013-10
- 期刊:
- 影响因子:9.5
- 作者:P. Wigge
- 通讯作者:P. Wigge
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Wigge其他文献
Philip Wigge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Wigge', 18)}}的其他基金
FDP a novel regulator of primordia fate
FDP是原基命运的新型调节剂
- 批准号:
BB/D010047/1 - 财政年份:2006
- 资助金额:
$ 64.59万 - 项目类别:
Research Grant
相似国自然基金
复合菌剂在高DO下的好氧反硝化脱氮机制及工艺调控研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
内生真菌DO14多糖PPF30调控铁皮石斛葡甘聚糖生物合成的机制
- 批准号:LZ23H280001
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于捕获“Do not eat me”信号的肺癌异质性分子功能可视化及机理研究
- 批准号:92259102
- 批准年份:2022
- 资助金额:60.00 万元
- 项目类别:重大研究计划
基于达文波特星形酵母Do18强化发酵的糟带鱼生物胺生物调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于PO-DGT原理的沉积物微界面pH-DO-磷-重金属的精细化同步成像技术研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
CD38/cADPR信号通路异常促逼尿肌过度活动(DO)发生的分子机制及干预措施研究
- 批准号:81770762
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
USP2介导RagA去泛素化稳定肿瘤细胞“Do not eat me”信号的机制研究
- 批准号:81773040
- 批准年份:2017
- 资助金额:62.0 万元
- 项目类别:面上项目
抑制骨细胞来源Sclerostin蛋白对颌面部DO成骨的协同促进作用
- 批准号:81771104
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
内生真菌DO14促铁皮石斛多糖成分积累的作用机制
- 批准号:31600259
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
末次冰期东亚季风DO事件的定年、转型及亚旋回研究
- 批准号:40702026
- 批准年份:2007
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 64.59万 - 项目类别:
Fellowship
Collaborative Research: How do plants control sperm nuclear migration for successful fertilization?
合作研究:植物如何控制精子核迁移以成功受精?
- 批准号:
2334517 - 财政年份:2024
- 资助金额:
$ 64.59万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: Do social environments influence the timing of male maturation in a close human relative?
博士论文研究:社会环境是否影响人类近亲的男性成熟时间?
- 批准号:
2341354 - 财政年份:2024
- 资助金额:
$ 64.59万 - 项目类别:
Standard Grant
The Politics of Financial Citizenship - How Do Middle Class Expectations Shape Financial Policy and Politics in Emerging Market Democracies?
金融公民政治——中产阶级的期望如何影响新兴市场民主国家的金融政策和政治?
- 批准号:
EP/Z000610/1 - 财政年份:2024
- 资助金额:
$ 64.59万 - 项目类别:
Research Grant
How do healthy brains drive a healthy economy? A novel occupational neuroscience approach
健康的大脑如何推动健康的经济?
- 批准号:
MR/X034100/1 - 财政年份:2024
- 资助金额:
$ 64.59万 - 项目类别:
Fellowship
Do autoantibodies to aberrantly glycosylated MUC1 drive extra-articular rheumatoid arthritis, and can GSK assets prevent driver antigen formation?
针对异常糖基化 MUC1 的自身抗体是否会导致关节外类风湿性关节炎,GSK 资产能否阻止驱动抗原形成?
- 批准号:
MR/Y022947/1 - 财政年份:2024
- 资助金额:
$ 64.59万 - 项目类别:
Research Grant
Do fine-scale water column structure and particle aggregations favor gelatinous-dominated food webs in subtropical continental shelf environments?
细尺度水柱结构和颗粒聚集是否有利于亚热带大陆架环境中以凝胶状为主的食物网?
- 批准号:
2244690 - 财政年份:2024
- 资助金额:
$ 64.59万 - 项目类别:
Standard Grant
Do root microbiomes control seagrass response to environmental stress?
根部微生物组是否控制海草对环境压力的反应?
- 批准号:
DP240100566 - 财政年份:2024
- 资助金额:
$ 64.59万 - 项目类别:
Discovery Projects
Do oxidative breaks accumulate at gene regulatory regions in disease?
疾病中的基因调控区域是否会积累氧化断裂?
- 批准号:
MR/Y000021/1 - 财政年份:2024
- 资助金额:
$ 64.59万 - 项目类别:
Research Grant
Why Do Breeders Tolerate Non-breeders In Animal Societies?
为什么动物社会中的饲养者容忍非饲养者?
- 批准号:
2333286 - 财政年份:2024
- 资助金额:
$ 64.59万 - 项目类别:
Continuing Grant














{{item.name}}会员




