Small molecule control of Wnt signal transduction
Wnt信号转导的小分子控制
基本信息
- 批准号:BB/I021922/1
- 负责人:
- 金额:$ 47.95万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Studying the functions of specific proteins by inactivation within an intact animal presents several challenges. Genetic deletion, or 'knockout,' technology completely eliminates a protein, but since the protein may have roles in different tissues or at different stages of development, a knockout mouse may not survive to the desired stage of maturity. Drug-based approaches are attractive alternatives because small molecules can be used to inhibit protein function in a genetically normal animal, they can be administered and removed at specific times and are thus reversible, and they often provide attractive lead compounds for drug development. However, small molecules present their own challenges. Is there a small molecule that targets the protein of interest? Can it be delivered to a live animal? Most importantly, can off-target effects of the small molecule be minimized? To study the function of signaling proteins in development we are combining the advantages of gene targeting and small molecules, using a novel approach called inducible stabilization in which a non-toxic drug regulates the stability of any specific protein of interest. As an embryo develops and grows, each cell must be precisely coordinated with its neighbors in order for the animal to be properly patterned. These cells must be communicating with surrounding tissues and making cell fate decisions at all times. How do cells know which stimuli to respond to and which stimuli to ignore? A more thorough understanding of what key signaling molecules are doing in specific types of cells will give us a better understanding of how an animal is built, as well as what happens when development goes awry. My work aims to address these questions by adapting novel chemical tools to help us better understand embryonic development. A major problem when studying developmental processes is that these processes occur over time. For example, first the embryo makes neural precursors, then it allocates some of these cells to become different types of neural tissue. Meanwhile, because the embryo is growing and changing in shape, all these tissues need to develop and be moved to the right place at the right time. Somehow the cells can sense an 'architectural plan' and coordinate to make brains in the head and motor neurons precisely where the limbs are developing. Specifically, this work will focus on making new tools to study beta-catenin, a molecule that is important in development and in diseases such as cancer. Because of the importance of this molecule, we are using it as a 'test case' for these new technologies. In this way, our 'test case' will teach us a great deal about these new methods and will also likely be generally useful for future biological studies. A second aim makes use of our existing drug-dependent allele of glycogen synthase kinase-3 (GSK-3) to study neural crest migration. This protein is also an important regulator of development and disease. We have previously shown, using similar methods, that GSK-3 is necessary during a critical period in palate development. Using these mice, we found that adding back this protein during mid-gestation was sufficient to rescue cleft palate in mutant mice. We hope to use these kinds of approaches to understand the timing and amounts of gene activity required in different developmental processes. Taken together, this project will provide important new chemical biology tools for the research community as well as gaining insight into molecular mechanisms underlying neural crest migration. A better understanding of neural crest migration will likely help us better understand human development and diseases processes such as cancer metastasis.
通过在完整动物体内失活来研究特定蛋白质的功能面临着一些挑战。基因删除或“基因敲除”技术完全消除了蛋白质,但由于该蛋白质可能在不同组织或不同发育阶段发挥作用,因此基因敲除小鼠可能无法存活到所需的成熟阶段。基于药物的方法是有吸引力的替代方案,因为小分子可用于抑制遗传正常动物的蛋白质功能,它们可以在特定时间施用和去除,因此是可逆的,并且它们通常为药物开发提供有吸引力的先导化合物。然而,小分子也面临着自己的挑战。是否存在针对目标蛋白质的小分子?它可以传递给活体动物吗?最重要的是,小分子的脱靶效应能否最小化?为了研究信号蛋白在发育过程中的功能,我们结合了基因靶向和小分子的优点,使用了一种称为诱导稳定的新方法,其中无毒药物调节任何特定目标蛋白的稳定性。随着胚胎的发育和生长,每个细胞必须与其相邻细胞精确协调,以便动物形成正确的模式。这些细胞必须始终与周围组织沟通并做出细胞命运决定。细胞如何知道对哪些刺激做出反应以及忽略哪些刺激?更全面地了解关键信号分子在特定类型细胞中的作用将使我们更好地了解动物是如何构建的,以及当发育出现问题时会发生什么。我的工作旨在通过采用新颖的化学工具来解决这些问题,以帮助我们更好地了解胚胎发育。研究发育过程时的一个主要问题是这些过程随着时间的推移而发生。例如,胚胎首先产生神经前体,然后将其中一些细胞分配成不同类型的神经组织。同时,由于胚胎正在生长和形状发生变化,所有这些组织都需要发育并在正确的时间移动到正确的位置。不知何故,这些细胞可以感知“建筑计划”并进行协调,使头部的大脑和运动神经元精确地定位在四肢正在发育的地方。具体来说,这项工作将侧重于开发新工具来研究β-连环蛋白,β-连环蛋白是一种在发育和癌症等疾病中发挥重要作用的分子。由于该分子的重要性,我们将其用作这些新技术的“测试用例”。通过这种方式,我们的“测试案例”将教会我们很多关于这些新方法的知识,并且也可能对未来的生物学研究普遍有用。第二个目标是利用我们现有的糖原合成酶激酶 3 (GSK-3) 的药物依赖性等位基因来研究神经嵴迁移。这种蛋白质也是发育和疾病的重要调节因子。我们之前已经使用类似的方法表明,GSK-3 在味觉发育的关键时期是必需的。使用这些小鼠,我们发现在妊娠中期添加这种蛋白质足以挽救突变小鼠的腭裂。我们希望利用这些方法来了解不同发育过程中所需的基因活动的时间和数量。总而言之,该项目将为研究界提供重要的新化学生物学工具,并深入了解神经嵴迁移的分子机制。更好地了解神经嵴迁移可能有助于我们更好地了解人类发育和癌症转移等疾病过程。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineering FKBP-Based Destabilizing Domains to Build Sophisticated Protein Regulation Systems.
- DOI:10.1371/journal.pone.0145783
- 发表时间:2015
- 期刊:
- 影响因子:3.7
- 作者:An W;Jackson RE;Hunter P;Gögel S;van Diepen M;Liu K;Meyer MP;Eickholt BJ
- 通讯作者:Eickholt BJ
Cranial suture lineage and contributions to repair of the mouse skull
- DOI:10.1242/dev.202116
- 发表时间:2024-02-01
- 期刊:
- 影响因子:4.6
- 作者:Doro,Daniel;Liu,Annie;Liu,Karen J.
- 通讯作者:Liu,Karen J.
Calvarial Suture-Derived Stem Cells and Their Contribution to Cranial Bone Repair.
- DOI:10.3389/fphys.2017.00956
- 发表时间:2017
- 期刊:
- 影响因子:4
- 作者:Doro DH;Grigoriadis AE;Liu KJ
- 通讯作者:Liu KJ
Glycogen synthase kinase 3 controls migration of the neural crest lineage in mouse and Xenopus.
- DOI:10.1038/s41467-018-03512-5
- 发表时间:2018-03-19
- 期刊:
- 影响因子:16.6
- 作者:Gonzalez Malagon SG;Lopez Muñoz AM;Doro D;Bolger TG;Poon E;Tucker ER;Adel Al-Lami H;Krause M;Phiel CJ;Chesler L;Liu KJ
- 通讯作者:Liu KJ
Cranial neural crest cells form corridors prefiguring sensory neuroblast migration.
- DOI:10.1242/dev.091033
- 发表时间:2013-09
- 期刊:
- 影响因子:0
- 作者:Freter S;Fleenor SJ;Freter R;Liu KJ;Begbie J
- 通讯作者:Begbie J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karen Liu其他文献
Cyclic glycine-proline normalizes systolic blood pressure in high-fat diet-induced obese male rats.
环甘氨酸-脯氨酸使高脂饮食诱导的肥胖雄性大鼠的收缩压正常化。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Fengxia Li;Karen Liu;C. Gray;P. Harris;C. Reynolds;M. Vickers;J. Guan - 通讯作者:
J. Guan
21-P038 GSK-3 and neural crest migration
- DOI:
10.1016/j.mod.2009.06.903 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:
- 作者:
Triona Bolger;Karen Liu - 通讯作者:
Karen Liu
Simulated musculoskeletal optimization for sprinting and marathon running
模拟短跑和马拉松的肌肉骨骼优化
- DOI:
10.1101/2023.08.07.552222 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
T. Van Wouwe;J. Hicks;S. Delp;Karen Liu - 通讯作者:
Karen Liu
Incidence and risk factors of trastuzumab-induced cardiac dysfunction in a predominantly Hispanic South Texas population: a descriptive study
- DOI:
10.1186/s40959-025-00319-4 - 发表时间:
2025-02-25 - 期刊:
- 影响因子:3.200
- 作者:
Aditi Sharma;Maria E. Fierro;Samuel Governor;Aishwarya Kothare;Stella Pak;Karen Liu;Zuha Alam;Prince Otchere - 通讯作者:
Prince Otchere
Karen Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karen Liu', 18)}}的其他基金
Collaborative Research: Differentiable and Expressive Simulators for Designing AI-enabled Robots
协作研究:用于设计人工智能机器人的可微分和富有表现力的模拟器
- 批准号:
2153854 - 财政年份:2022
- 资助金额:
$ 47.95万 - 项目类别:
Standard Grant
Congenital Anomalies: Patient-led Functional Genomics
先天性异常:患者主导的功能基因组学
- 批准号:
MC_PC_21044 - 财政年份:2022
- 资助金额:
$ 47.95万 - 项目类别:
Research Grant
EAGER: Data-Driven Contact Modeling
EAGER:数据驱动的接触建模
- 批准号:
1953008 - 财政年份:2019
- 资助金额:
$ 47.95万 - 项目类别:
Standard Grant
IMPC: Analysis of the novel craniocardiac malformation gene Rapgef5
IMPC:新型颅心畸形基因Rapgef5的分析
- 批准号:
MR/R014302/1 - 财政年份:2018
- 资助金额:
$ 47.95万 - 项目类别:
Research Grant
GSK3 and lamellipodial dynamics in migrating neural crest cells
迁移神经嵴细胞中的 GSK3 和板状足动力学
- 批准号:
BB/R015953/1 - 财政年份:2018
- 资助金额:
$ 47.95万 - 项目类别:
Research Grant
EAGER: Data-Driven Contact Modeling
EAGER:数据驱动的接触建模
- 批准号:
1748067 - 财政年份:2017
- 资助金额:
$ 47.95万 - 项目类别:
Standard Grant
UK - Taiwan Symposium on Stem Cell and Cancer Research
英国-台湾干细胞与癌症研究研讨会
- 批准号:
BB/K010492/1 - 财政年份:2012
- 资助金额:
$ 47.95万 - 项目类别:
Research Grant
G&V: Medium: Collaborative Research: Contact-Based Human Motion Acquisition and Synthesis
G
- 批准号:
1064983 - 财政年份:2011
- 资助金额:
$ 47.95万 - 项目类别:
Standard Grant
CAREER: Synthesis of Autonomous, Realistic Human Motion
职业:自主、真实的人体运动的综合
- 批准号:
0742302 - 财政年份:2007
- 资助金额:
$ 47.95万 - 项目类别:
Standard Grant
Using chemical tools to study Wnt signalling in neural development
使用化学工具研究神经发育中的 Wnt 信号传导
- 批准号:
BB/E013872/1 - 财政年份:2007
- 资助金额:
$ 47.95万 - 项目类别:
Research Grant
相似国自然基金
新型小分子蛋白—人肝细胞生长因子三环域(hHGFK1)抑制破骨细胞及治疗小鼠骨质疏松的疗效评估与机制研究
- 批准号:82370885
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
活细胞单分子成像定量研究EGFR内吞途径命运选择
- 批准号:32000557
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
中性粒细胞在体内条件下重编程为造血干祖细胞的研究
- 批准号:92068101
- 批准年份:2020
- 资助金额:80.0 万元
- 项目类别:重大研究计划
Tousled like kinase介导青光眼中视网膜神经节细胞死亡的作用和机制
- 批准号:32000518
- 批准年份:2020
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
小分子化合物促进肝细胞增殖和肝脏再生的研究
- 批准号:32000504
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
高效率单细胞分析微流控芯片的机理研究
- 批准号:31970754
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
黏附分子ICAM-1对于肺癌细胞生存和凋亡的作用及机制研究
- 批准号:31900536
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
SIRT1调控突变型p53肿瘤细胞死亡的分子机制研究
- 批准号:31970689
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
亚纳米单分子定位技术研究化学修饰对蛋白-膜相互作用的干预
- 批准号:91753104
- 批准年份:2017
- 资助金额:70.0 万元
- 项目类别:重大研究计划
D-A类共轭聚合物晶界内部tie molecule构象调控
- 批准号:51573185
- 批准年份:2015
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
Host Defense Small Molecule Development for COVID-19 Treatment by Targeting Lysosome
通过靶向溶酶体治疗 COVID-19 的宿主防御小分子开发
- 批准号:
10735492 - 财政年份:2023
- 资助金额:
$ 47.95万 - 项目类别:
Preclinical validation of small molecule immunomodulators for the treatment of Crohn's disease
小分子免疫调节剂治疗克罗恩病的临床前验证
- 批准号:
10600659 - 财政年份:2023
- 资助金额:
$ 47.95万 - 项目类别:
A small molecule approach to spatial and temporal control of covalent protein inhibition in cells
细胞内共价蛋白抑制的空间和时间控制的小分子方法
- 批准号:
2883086 - 财政年份:2023
- 资助金额:
$ 47.95万 - 项目类别:
Studentship
Discovery of GPR75 small molecule ligands for the treatment of obesity
发现用于治疗肥胖的 GPR75 小分子配体
- 批准号:
10697131 - 财政年份:2023
- 资助金额:
$ 47.95万 - 项目类别:
Small molecules combination therapy using polypharmacology approach as a novel treatment paradigm for rare bone disease
使用多药理学方法的小分子联合疗法作为罕见骨病的新型治疗范例
- 批准号:
10759694 - 财政年份:2023
- 资助金额:
$ 47.95万 - 项目类别:
Novel Small Molecule Drug Candidate for the Prevention of Bronchopulmonary Dysplasia
预防支气管肺发育不良的新型小分子候选药物
- 批准号:
10698418 - 财政年份:2023
- 资助金额:
$ 47.95万 - 项目类别:
Axin Stabilization by Novel Small Molecules to Treat Non-alcoholic Steatohepatitis
新型小分子稳定轴蛋白治疗非酒精性脂肪性肝炎
- 批准号:
10659312 - 财政年份:2023
- 资助金额:
$ 47.95万 - 项目类别:
Small molecule modulation of 14-3-3 protein-protein interactions
14-3-3 蛋白质-蛋白质相互作用的小分子调节
- 批准号:
10607941 - 财政年份:2023
- 资助金额:
$ 47.95万 - 项目类别:
IND-Enabling Development of a Small Molecule COVID Therapeutic
IND 促进小分子新冠肺炎治疗药物的开发
- 批准号:
10697173 - 财政年份:2023
- 资助金额:
$ 47.95万 - 项目类别:
Allosteric Targeting of Cannabinoid CB1 Receptor to Develop Non-Addictive Small Molecule Analgesics
大麻素 CB1 受体变构靶向开发非成瘾性小分子镇痛药
- 批准号:
10512672 - 财政年份:2022
- 资助金额:
$ 47.95万 - 项目类别:














{{item.name}}会员




