Rationalising glycomics with GPU-accelerated equilibrium simulations: a novel route to 3D-structure biological function and molecular design
通过 GPU 加速平衡模拟合理化糖组学:3D 结构生物功能和分子设计的新途径
基本信息
- 批准号:BB/J00040X/1
- 负责人:
- 金额:$ 53.21万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Carbohydrates, amino acids, nucleic acids and lipids constitute the fundamental building blocks of life. Although carbohydrates were the first of these to be extracted from living organisms and characterised, our understanding of protein and nucleic acid biological function is far advanced, which is, in part, due to the excellent progress made in the 1950s on probing the structure of crystallised biological matter with x-rays. By investigating the geometries adopted by amino acids and nucleic acids, Watson, Crick, Pauling, Phillips and others theorised that biological function is a manifestation of microscopic shape, which drove a revolution in Biochemistry: the realisation that proteins comprise a string of amino acids folded into specific functional shapes and work as micro-machines. It also led to discovery of the DNA-double helix, which carries our genetic information and is the progenitor of Molecular Biology and Genetics. Unfortunately, a similar revolution has not occurred in our understanding and harnessing of carbohydrates, for example, although the heparin carbohydrate has been routinely used in surgical procedures for almost a century, the mechanism of action has only recently begun to be understood. The problem is that carbohydrates do not crystallise readily and other techniques to investigate their microscopic shape have not been developed. Consequently, the relationship between carbohydrate composition and function is tenuous. Carbohydrates, therefore, represent a major unexplored frontier in Biochemistry and due to their fundamental industrial importance (e.g., food, paper, wood, pharmaceuticals, biomaterials) any breakthrough in understanding this relationship would certainly lead to another revolution in biotechnology. This research is driving toward providing this important link between carbohydrate composition and function by developing new techniques for investigating their microscopic shape. Rather than using x-rays, we are using precise and extensive computer simulations, advanced methods for refining pure carbohydrates and a molecular microscope based on magnetic resonance (similar to MRI-scanners found in hospitals) to achieve this goal. To date our research has focused on unravelling some of the mysteries surrounding the large polymeric carbohydrate molecules called glycosaminoglycans (GAGs), which fill the space between cells, bonding them together, conferring strength to organs, joints and skin, while allowing our bodies to grow and change. Microscopically, carbohydrate molecules are composed of chemical rings, joined together to form polymeric chains. We found that to accurately describe the shape of these molecules we need to understand both what is happening around the connection joints between these rings and also how the rings flex dynamically. Computer simulations of carbohydrates, which take into account thousands of interactions with solvent water, have so far managed to investigate the joints, but up until now limitations in computer hardware has not permitted an investigation into ring flexing because it happens on timescales that are hundreds of times longer. We overcame this problem using graphics processors (hardware used for computer gaming) to dramatically speed-up simulations and provide insight into the GAG heparan sulphate, an anticoagulant similar to heparin that lines blood vessels. It has revealed that ring flexing is central to carbohydrate function and that absence of ring flexing leads to regions that are stiffened, which consequently interact with other molecules in the body. We now plan to research and test this hypothesis further and determine whether this ring flexing behaviour is central to the function of other GAGs, such as those found in cartilage and skin, whether it is important in other human and plant carbohydrates and whether it can be used for understanding how to design novel pharmaceuticals and biomaterials based on carbohydrates.
碳水化合物、氨基酸、核酸和脂质构成了生命的基本组成部分。虽然碳水化合物是第一个从生物体中提取并表征的,但我们对蛋白质和核酸生物功能的理解已经非常先进,这部分归功于20世纪50年代在用X射线探测结晶生物物质结构方面取得的巨大进展。通过研究氨基酸和核酸所采用的几何形状,沃森、克里克、鲍林、菲利普斯和其他人提出了生物功能是微观形状的表现的理论,这推动了生物化学的革命:认识到蛋白质由一串折叠成特定功能形状的氨基酸组成,并作为微型机器工作。它还导致了DNA双螺旋的发现,它携带着我们的遗传信息,是分子生物学和遗传学的祖先。不幸的是,在我们对碳水化合物的理解和利用方面没有发生类似的革命,例如,尽管肝素碳水化合物在外科手术中常规使用了近世纪,但其作用机制直到最近才开始被理解。问题是碳水化合物不容易结晶,并且还没有开发出研究其微观形状的其他技术。因此,碳水化合物的组成和功能之间的关系是脆弱的。因此,碳水化合物代表了生物化学中一个主要的未探索的前沿,并且由于其基本的工业重要性(例如,食品、纸张、木材、药品、生物材料)对这种关系的理解的任何突破都必将导致生物技术的另一场革命。这项研究正在通过开发研究其微观形状的新技术来推动碳水化合物组成和功能之间的重要联系。我们不使用X射线,而是使用精确和广泛的计算机模拟,精制纯碳水化合物的先进方法和基于磁共振的分子显微镜(类似于医院中的MRI扫描仪)来实现这一目标。到目前为止,我们的研究集中在解开一些围绕称为糖胺聚糖(GAG)的大聚合碳水化合物分子的奥秘,这些分子填充细胞之间的空间,将它们结合在一起,赋予器官,关节和皮肤力量,同时允许我们的身体生长和变化。在显微镜下,碳水化合物分子由化学环组成,连接在一起形成聚合链。我们发现,为了准确描述这些分子的形状,我们需要了解这些环之间的连接点周围发生了什么,以及环如何动态弯曲。碳水化合物的计算机模拟,考虑到与溶剂水的数千种相互作用,迄今为止已经成功地研究了关节,但到目前为止,计算机硬件的限制还不允许对环弯曲进行研究,因为它发生的时间尺度要长数百倍。我们使用图形处理器(用于计算机游戏的硬件)克服了这个问题,大大加快了模拟速度,并提供了对GAG硫酸乙酰肝素的深入了解,这是一种类似于肝素的抗凝血剂,用于血管。它揭示了环弯曲是碳水化合物功能的核心,并且环弯曲的缺乏导致硬化的区域,从而与体内的其他分子相互作用。我们现在计划进一步研究和测试这一假设,并确定这种环弯曲行为是否是其他糖胺聚糖功能的核心,例如在软骨和皮肤中发现的糖胺聚糖,它是否在其他人类和植物碳水化合物中很重要,以及它是否可以用于理解如何设计基于碳水化合物的新型药物和生物材料。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Does microsecond sugar ring flexing encode 3D-shape and bioactivity in the heparanome?
微秒糖环弯曲是否编码肝素组中的 3D 形状和生物活性?
- DOI:10.1021/bm400067g
- 发表时间:2013
- 期刊:
- 影响因子:6.2
- 作者:Sattelle BM
- 通讯作者:Sattelle BM
Microsecond kinetics in model single- and double-stranded amylose polymers.
- DOI:10.1039/c4cp00570h
- 发表时间:2014-05-07
- 期刊:
- 影响因子:0
- 作者:Sattelle BM;Almond A
- 通讯作者:Almond A
Proteoglycans and their heterogeneous glycosaminoglycans at the atomic scale.
蛋白聚糖及其在原子量表处的异质糖胺聚糖。
- DOI:10.1021/bm5018386
- 发表时间:2015-03-09
- 期刊:
- 影响因子:6.2
- 作者:Sattelle, Benedict M.;Shakeri, Javad;Cliff, Matthew J.;Almond, Andrew
- 通讯作者:Almond, Andrew
Shaping up for structural glycomics: a predictive protocol for oligosaccharide conformational analysis applied to N-linked glycans.
- DOI:10.1016/j.carres.2013.10.011
- 发表时间:2014-01-13
- 期刊:
- 影响因子:3.1
- 作者:Sattelle, Benedict M.;Almond, Andrew
- 通讯作者:Almond, Andrew
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Almond其他文献
Point-of-Care Laboratory Data Collection During Critical Care Transport
- DOI:
10.1016/j.amj.2020.09.003 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:0
- 作者:
Jamie Eastman;Deborah Allen;Kevin Mumma;Andrew Almond;Jason Theiling - 通讯作者:
Jason Theiling
Structural characterisation of two forms of procyclic acidic repetitive protein expressed by procyclic forms of Trypanosoma brucei.
由布氏锥虫的原环形式表达的两种形式的原环酸性重复蛋白的结构特征。
- DOI:
10.1006/jmbi.1997.1066 - 发表时间:
1997 - 期刊:
- 影响因子:5.6
- 作者:
Achim Treumann;Nicole Zitzmann;Andreas Hülsmeier;Alan R. Prescott;Andrew Almond;John K. Sheehan;Michael A. J. Ferguson - 通讯作者:
Michael A. J. Ferguson
Expression and Purification of Functionally Active Hyaluronan-binding Domains from Human Cartilage Link Protein, Aggrecan and Versican: FORMATION OF TERNARY COMPLEXES WITH DEFINED HYALURONAN OLIGOSACCHARIDES
- DOI:
10.1074/jbc.m411297200 - 发表时间:
2005-02-18 - 期刊:
- 影响因子:
- 作者:
Nicholas T. Seyfried;Gillian F. McVey;Andrew Almond;David J. Mahoney;Jayesh Dudhia;Anthony J. Day - 通讯作者:
Anthony J. Day
Andrew Almond的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Almond', 18)}}的其他基金
A hybrid strategy for massive acceleration of directed evolution: meeting the need for high-turnover enzymes in industrial biotechnology.
大规模加速定向进化的混合策略:满足工业生物技术中对高周转酶的需求。
- 批准号:
BB/R014426/1 - 财政年份:2018
- 资助金额:
$ 53.21万 - 项目类别:
Research Grant
Unravelling the biological function of heparan sulphate domain structure by three-dimensional analysis
通过三维分析揭示硫酸乙酰肝素结构域的生物学功能
- 批准号:
BB/G006768/1 - 财政年份:2009
- 资助金额:
$ 53.21万 - 项目类别:
Research Grant
Customisation of our 3D drug-discovery software to the pharmaceutical sector: product analysis and development
为制药行业定制我们的 3D 药物发现软件:产品分析和开发
- 批准号:
BB/F528081/1 - 财政年份:2008
- 资助金额:
$ 53.21万 - 项目类别:
Research Grant
A graphical user interface for novel software that expedites drug discovery by providing experimentally-determined 3D structures of free ligands.
新颖软件的图形用户界面,通过提供实验确定的游离配体的 3D 结构来加速药物发现。
- 批准号:
BB/F528006/1 - 财政年份:2007
- 资助金额:
$ 53.21万 - 项目类别:
Research Grant
相似海外基金
Creation of innovative technology platform for single-cell glycomics
创建单细胞糖组学创新技术平台
- 批准号:
23H02179 - 财政年份:2023
- 资助金额:
$ 53.21万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A systems glycobiology platform for revealing new immunotherapy targets in acute myeloid leukemia
用于揭示急性髓系白血病新免疫治疗靶点的系统糖生物学平台
- 批准号:
488516 - 财政年份:2023
- 资助金额:
$ 53.21万 - 项目类别:
Operating Grants
GlycoNet - Canadian Glycomics Network
GlycoNet - 加拿大糖组学网络
- 批准号:
468633-2019 - 财政年份:2022
- 资助金额:
$ 53.21万 - 项目类别:
Networks of Centres of Excellence
Discovery of glycan markers of pancreatic cancer stem cells by single-cell glycomics
通过单细胞糖组学发现胰腺癌干细胞的聚糖标记物
- 批准号:
22K19471 - 财政年份:2022
- 资助金额:
$ 53.21万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Generation of galectin-9-specific single-domain antibodies: new inhibitors to improve immunotherapy of cancer.
半乳糖凝集素 9 特异性单域抗体的产生:改善癌症免疫治疗的新抑制剂。
- 批准号:
476008 - 财政年份:2022
- 资助金额:
$ 53.21万 - 项目类别:
Studentship Programs
Canada Excellence Research Chair in Glycomics
加拿大糖组学卓越研究主席
- 批准号:
CERC-2018-00003 - 财政年份:2022
- 资助金额:
$ 53.21万 - 项目类别:
Canada Excellence Research Chairs
Microbial modification of the cervicovaginal glycome as a risk factor for chlamydia
宫颈阴道糖组的微生物修饰作为衣原体的危险因素
- 批准号:
453431 - 财政年份:2021
- 资助金额:
$ 53.21万 - 项目类别:
Operating Grants
Harnessing Glycoproteomics and Glycomics to Understand Cardiac Biology and Disease
利用糖蛋白组学和糖组学来了解心脏生物学和疾病
- 批准号:
10337288 - 财政年份:2021
- 资助金额:
$ 53.21万 - 项目类别:
Development for automatic data analysis of large-scale glycomics
大规模糖组学自动数据分析的开发
- 批准号:
21K12124 - 财政年份:2021
- 资助金额:
$ 53.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Canada Excellence Research Chair in Glycomics
加拿大糖组学卓越研究主席
- 批准号:
50156012018-2018 - 财政年份:2021
- 资助金额:
$ 53.21万 - 项目类别:
Canada Excellence Research Chairs