Targeted drug delivery to neurons and glia using light- and field-sensitive microcapsules
使用光和场敏感微胶囊将靶向药物递送至神经元和神经胶质细胞
基本信息
- 批准号:BB/J001473/1
- 负责人:
- 金额:$ 93.07万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Targeted drug delivery has been a high-priority issue in both experimental and translational biomedical research. Recent breakthroughs in bionanotechnology have opened new opportunities in this area, prompting a rapidly growing interest among biologists, medical practitioners and business community. A major challenge in this area has been to develop delivery systems that would incorporate different functionalities in one engineered entity. Such system should enable to carry bioactive substances to a target site and release them in a space- and time-controlled fashion. We have been focusing on 3D microcapsule systems that have recently attracted intense attention owing to their ability to contain a wide range of chemicals, the adjustable membrane permeability and sensitivity to different stimuli (pH, temperature, light, osmolarity, etc), all combined in one entity. This nano-technology has be carefully adapted for particular cell systems and tissues, by allowing controlled cargo release, payload protection, manipulation in space and full compatibility with live tissue. All these functions can be achieved in principle by the encapsulation technology have we have developed to date. In addition to drug delivery per se, our micron-sized capsules could provide an excellent experimental model for mimicking biochemical processes in a confined space, such as imitating cell organelles. Indeed, when equipped with specific membrane properties these capsules can serve as a long-term intracellular reporter or enzymatic reactor which can be embedded in tissues or cells. Notwithstanding these breakthroughs, there have been no attempts to date to adapt this methodology to studies of nerve cells or brain tissue. Delivery of fluorescent dyes, toxins, receptor ligands, or protein material to target nerve or glial cells has been a critical element in both neurobiological and neurological research. However, achieving this delivery in a highly controlled manner in space and time has hitherto been possible only using invasive, 'one-shot' methods such as microinjection or electroporation. The proposed project provides therefore a unique opportunity to combine a methodological breakthrough in multifunctional encapsulation with a clear experimental (and potentially translational) demand for adapting this approach to nervous tissue. The UCL group was among the first in the UK to combine patch-clamp electrophysiology with two-photon excitation imaging and later with two-photon uncaging in organised brain tissue, accumulating internationally recognised expertise in physiology and biophysics of synapses and brain circuits. The QMUL group has recently demonstrated intracellular delivery of various payloads using polyelectrolyte multilayer microcapsules and remote cargo release using visible and infrared laser radiation. Both teams are therefore uniquely positioned for testing and implementation of this new technique, which could potentially revolutionise bio-medical research also offering numerous opportunities for clinical applications. We therefore plan to develop protocols of synthetic microcapsulation optimised for successful delivery, tracking and laser-triggered opening in neuron-glial cultures and organised brain tissue. We will optimise efficiency, dynamic range and kinetics of capsular payload release inside and outside target cells and cell populations. We will test the proposed methodology in neurobiological environment, by monitoring physiological effects of drug application in real time for common neurobiological tasks: (a) extracellular delivery of neurotransmitter, (b) targeted ligand delivery inside neurons, (b) targeted toxin delivery inside glia. Achieving our objectives will not only pave the way for a new dimension of experimental probing in neurobiology, but also lay the foundation for clinically relevant applications in drug delivery.
靶向给药在实验和转化生物医学研究中一直是一个高度优先的问题。最近在生物纳米技术方面的突破为这一领域打开了新的机会,促使生物学家、医生和企业界迅速增长的兴趣。这一领域的一个主要挑战是开发将不同功能合并到一个工程实体中的交付系统。这种系统应能够将生物活性物质运送到目标地点,并以空间和时间受控方式释放它们。我们一直在关注3D微胶囊系统,因为它们能够包含广泛的化学物质,可调节的膜渗透性和对不同刺激(pH、温度、光、渗透压等)的敏感性,所有这些都结合在一个实体中,最近引起了人们的强烈关注。这种纳米技术已被仔细调整,以适应特定的细胞系统和组织,允许受控的货物释放、有效载荷保护、空间操作以及与活组织的完全兼容。所有这些功能原则上都可以通过我们目前开发的封装技术来实现。除了本身的药物输送,我们的微米大小的胶囊可以为在有限的空间中模拟生化过程提供一个很好的实验模型,例如模拟细胞细胞器。事实上,当这些胶囊具有特定的膜特性时,可以作为长期的细胞内报告程序或酶反应装置,可以嵌入组织或细胞中。尽管取得了这些突破,但迄今为止还没有人尝试将这种方法应用于神经细胞或脑组织的研究。将荧光染料、毒素、受体配体或蛋白质材料输送到靶神经或神经胶质细胞一直是神经生物学和神经学研究中的关键因素。然而,到目前为止,在空间和时间上以高度受控的方式实现这种传递是可能的,只有使用微注射或电穿孔等侵入性的“一次”方法。因此,拟议的项目提供了一个独特的机会,可以将多功能封装的方法学突破与将这种方法应用于神经组织的明确实验(以及潜在的翻译)需求结合起来。伦敦大学学院的团队是英国首批将膜片钳电生理学与双光子激发成像结合在一起的团队之一,后来又将双光子植入有组织的脑组织,积累了突触和大脑回路的生理学和生物物理学方面的国际公认的专业知识。QMUL小组最近展示了使用聚电解质多层微胶囊在细胞内传递各种有效载荷,以及使用可见光和红外激光辐射远程释放货物。因此,这两个团队在测试和实施这项新技术方面都处于独特的地位,这可能会给生物医学研究带来革命性的变化,也为临床应用提供了无数机会。因此,我们计划开发合成微囊的方案,优化为在神经元胶质细胞培养和有组织的脑组织中成功传递、跟踪和激光触发的开放。我们将优化靶细胞和细胞群体内外的包膜有效载荷释放的效率、动态范围和动力学。我们将在神经生物学环境中通过实时监测药物应用对常见神经生物学任务的生理影响来测试所提出的方法:(A)神经递质的细胞外递送,(B)神经元内的靶向配体递送,(B)神经胶质内的靶向毒素递送。实现我们的目标不仅将为神经生物学实验探索的新维度铺平道路,也将为药物输送的临床相关应用奠定基础。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molecular nature of breakdown of the folic acid under hydrothermal treatment: a combined experimental and DFT study.
- DOI:10.1038/s41598-020-76311-y
- 发表时间:2020-11-12
- 期刊:
- 影响因子:4.6
- 作者:Abramova AM;Kokorina AA;Sindeeva OA;Jolibois F;Puech P;Sukhorukov GB;Goryacheva IY;Sapelkin AV
- 通讯作者:Sapelkin AV
Astrocytic GABA transporter activity modulates excitatory neurotransmission.
- DOI:10.1038/ncomms13572
- 发表时间:2016-11-25
- 期刊:
- 影响因子:16.6
- 作者:Boddum, Kim;Jensen, Thomas P.;Magloire, Vincent;Kristiansen, Uffe;Rusakov, Dmitri A.;Pavlov, Ivan;Walker, Matthew C.
- 通讯作者:Walker, Matthew C.
Engineering a DNA origami mediated multicolour quantum dot platform for sub-diffraction spectral separation imaging.
- DOI:10.1039/d2ra04316e
- 发表时间:2022-08-22
- 期刊:
- 影响因子:3.9
- 作者:
- 通讯作者:
Alpha-2-macroglobulin loaded microcapsules enhance human leukocyte functions and innate immune response.
- DOI:10.1016/j.jconrel.2015.09.021
- 发表时间:2015-11-10
- 期刊:
- 影响因子:0
- 作者:Federici Canova D;Pavlov AM;Norling LV;Gobbetti T;Brunelleschi S;Le Fauder P;Cenac N;Sukhorukov GB;Perretti M
- 通讯作者:Perretti M
Visualising nanoscale restructuring of a cellular membrane triggered by polyelectrolyte microcapsules.
- DOI:10.1039/c8nr03870h
- 发表时间:2018-09-13
- 期刊:
- 影响因子:6.7
- 作者:Chen Y ;Sukhorukov GB ;Novak P
- 通讯作者:Novak P
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dmitri Rusakov其他文献
Tornado-FLIM acquisition for monitoring single-synapse presynaptic calcium dynamics in a mouse model of a migraine
- DOI:
10.1016/j.ibror.2019.07.1533 - 发表时间:
2019-09-01 - 期刊:
- 影响因子:
- 作者:
Olga Tyurikova;Elizabeth Nicholson;Dimitri Michael Kullmann;Dmitri Rusakov;Kirill Volynski - 通讯作者:
Kirill Volynski
AMPA receptor-mediated presynaptic inhibition at cerebellar GABAergic synapses : a characterization of molecular mechanisms.
AMPA 受体介导的小脑 GABA 突触突触前抑制:分子机制的表征。
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Shin'Ichiro Satake;Fumihito Saitow;Dmitri Rusakov;Shiro Konishi - 通讯作者:
Shiro Konishi
Dmitri Rusakov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dmitri Rusakov', 18)}}的其他基金
Memory trace formation at and beyond individual synapses in the intact brain
完整大脑中单个突触内外的记忆痕迹形成
- 批准号:
BB/Y003926/1 - 财政年份:2024
- 资助金额:
$ 93.07万 - 项目类别:
Research Grant
A 3Rs platform for glial research: From animal to human to in-silico models
神经胶质研究的 3R 平台:从动物到人类再到计算机模型
- 批准号:
NC/X001067/1 - 财政年份:2022
- 资助金额:
$ 93.07万 - 项目类别:
Research Grant
Targeting Kir4.1 To Control Brain Excitability And Seizures
以 Kir4.1 为目标来控制大脑兴奋性和癫痫发作
- 批准号:
MR/W019752/1 - 财政年份:2022
- 资助金额:
$ 93.07万 - 项目类别:
Research Grant
Modulation of neurotransmitter release by cannabinoid receptors at individual cortical synapses
大麻素受体对单个皮质突触神经递质释放的调节
- 批准号:
G0900613/1 - 财政年份:2009
- 资助金额:
$ 93.07万 - 项目类别:
Research Grant
Nano-diffusion in the brain: mechanisms and implications examined with time-resolved fluorescence anisotropy imaging
大脑中的纳米扩散:通过时间分辨荧光各向异性成像检查的机制和影响
- 批准号:
G0802216/1 - 财政年份:2009
- 资助金额:
$ 93.07万 - 项目类别:
Research Grant
Probing presynaptic receptor function with two-photon uncaging, Ca2+ imaging and photobleaching
通过双光子解笼、Ca2 成像和光漂白探测突触前受体功能
- 批准号:
G0600368/1 - 财政年份:2007
- 资助金额:
$ 93.07万 - 项目类别:
Research Grant
相似国自然基金
酶响应的中性粒细胞外泌体载药体系在眼眶骨缺损修复中的作用及机制研究
- 批准号:82371102
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
PfAP2-R介导的PfCRT转录调控在恶性疟原虫对喹啉类药物抗性中的作用及机制研究
- 批准号:82372275
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
背根神经节中Mrgprd通过一种特异性lncRNA调控阿片类药物耐受的外周机制研究
- 批准号:82371224
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
不同功能基团的电中性Drug-Free纳米颗粒的构建及克服肿瘤耐药的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TCF7L2突变介导SMAD7信号轴抑制KRAS突变型结直肠癌转移及耐药的分子机制研究
- 批准号:32000555
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
PRMT1-meFOXO1通路在低温常压等离子体诱导的三阴型乳腺癌细胞铁死亡中的作用机制研究
- 批准号:31900528
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
Drug-ADR-Pathway复合网络构建及ADR分子机制研究
- 批准号:61372188
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
IL-6自主分泌介导的B细胞来源淋巴造血系统肿瘤耐药的相关机制研究
- 批准号:81172109
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
多巴胺系统在中枢神经系统疾病发病机理作用的研究
- 批准号:31123002
- 批准年份:2011
- 资助金额:300.0 万元
- 项目类别:专项基金项目
基于siRNA文库筛选的膀胱癌生物治疗的细胞和分子机制研究
- 批准号:81172419
- 批准年份:2011
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
SpyTCR-RBNP - Engineering a highly targeted and biocompatible drug delivery system for solid cancer treatment
SpyTCR-RBNP - 设计用于实体癌症治疗的高度针对性和生物相容性的药物输送系统
- 批准号:
10095606 - 财政年份:2024
- 资助金额:
$ 93.07万 - 项目类别:
Collaborative R&D
Evaluation and optimisation of new engineered human human apoferritins: protein nanocages for targeted drug delivery and intracellular cargo release
新型工程人类脱铁铁蛋白的评估和优化:用于靶向药物输送和细胞内货物释放的蛋白质纳米笼
- 批准号:
BB/Y008200/1 - 财政年份:2024
- 资助金额:
$ 93.07万 - 项目类别:
Research Grant
ICF: Enhancing Blood-Brain Barrier Opening with Ultrasound and Microwaves for Targeted Drug Delivery
ICF:利用超声波和微波增强血脑屏障开放以实现靶向药物输送
- 批准号:
MR/Z503848/1 - 财政年份:2024
- 资助金额:
$ 93.07万 - 项目类别:
Research Grant
Multifunctional nanomedicine prototypes acting as prophylactics and virus-assisted targeted drug delivery vehicle (NANOPROV)
作为预防剂和病毒辅助靶向药物输送载体的多功能纳米药物原型(NANOPROV)
- 批准号:
MR/Y50337X/1 - 财政年份:2024
- 资助金额:
$ 93.07万 - 项目类别:
Research Grant
Active Particles in Complex Environments: from the transport of microorganisms to targeted drug delivery
复杂环境中的活性颗粒:从微生物运输到靶向药物输送
- 批准号:
2902827 - 财政年份:2023
- 资助金额:
$ 93.07万 - 项目类别:
Studentship
Tumor-Targeted Multimodality Nanoscale Coordination Polymers for Chemo-Immunotherapy of Metastatic Colorectal Cancer
用于转移性结直肠癌化疗免疫治疗的肿瘤靶向多模态纳米配位聚合物
- 批准号:
10639649 - 财政年份:2023
- 资助金额:
$ 93.07万 - 项目类别:
Develop an engineered Cas effector for in vivo cell-targeted delivery in the eye to treat autosomal dominant BEST disease
开发工程化 Cas 效应器,用于眼内体内细胞靶向递送,以治疗常染色体显性 BEST 疾病
- 批准号:
10668167 - 财政年份:2023
- 资助金额:
$ 93.07万 - 项目类别:
Crosslinking-based targeted therapy for triple-negative breast cancer
基于交联的三阴性乳腺癌靶向治疗
- 批准号:
10650998 - 财政年份:2023
- 资助金额:
$ 93.07万 - 项目类别:
Targeted immune therapies in heart transplantation
心脏移植中的靶向免疫治疗
- 批准号:
10573846 - 财政年份:2023
- 资助金额:
$ 93.07万 - 项目类别:
Engineering Siglec15/TGF-beta targeted bispecific antibodies that modulate the tumor microenvironment and enhances T-cell immunotherapy against pancreatic cancer
工程化 Siglec15/TGF-β 靶向双特异性抗体可调节肿瘤微环境并增强针对胰腺癌的 T 细胞免疫治疗
- 批准号:
10651442 - 财政年份:2023
- 资助金额:
$ 93.07万 - 项目类别: