Optimising Photosynthetic Efficiency via Leaf Structure
通过叶子结构优化光合效率
基本信息
- 批准号:BB/J004065/1
- 负责人:
- 金额:$ 56.26万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Almost all our food depends eventually on the process of photosynthesis by which carbon dioxide in the atmosphere is fixed, using the energy of sunlight, into simple sugars. This process occurs mainly in the leaves of plants. Although the biochemical process of photosynthesis is highly conserved (i.e., is very similar in different plants), leaf form is very variable, both between different species and even within a species, depending on environmental conditions.The form of the leaf is important for photosynthesis since it will directly influence the efficiency of the process. For example, carbon dioxide in the atmosphere must first enter aleaf by small pores on the leaf surface (stomata), then traverse the inside of the leaf via air spaces before reaching the cells where the chloroplasts are located, which is where photosynthesis occurs. Even though these distances may seem quite small, differences in this internal pathway of carbon dioxide movement can have a major affect on the efficiency of photosynthesis. The aim of this project is to understand more about the rules which link the efficiency of photosynthesis and the internal cellular architecture of a leaf. By knowing more about these rules, we will be in a stronger position to select new breeds of plant which can perform photosynthesis more efficiently.To achieve this aim, we will initially use the model plant Arabidopsis. This is the most advanced lab plant and we have developed tools which allow us to manipulate the cellular architecture of this leaf is a precise and controlled fashion. We will thus generate plants with a variety of altered cellular architectures. We will then analyse these architectures using an advanced imaging technique called micro-computer tomography. This will provide us with quantitative data on a number of parameters which might influence the flow of carbon dioxide within a leaf. We will also analyse the same leaves to investigate how well they are performing photosynthesis. By combining these data, we will be able, firstly, to test ideas already put forward on the importance of cellular architecture for the efficiency of photosynthesis. We will also be able to analyse our data to look for novel architectures which could act to improve the efficiency of photosynthesis but which do not have adverse knock-on affects for the leaf, for example on the rate of water loss. This concerted and ordered analysis of cellular architecture and photosynthesis and physiology will help identify the ground rules relating these factors.Finally, by linking up with colleagues working at the International Rice Research Institute (IRRI) in the Phillipines (a main centre for rice research, the most important crop in the world) we will investigate whether the data obtained from our lab plant can help in screening experiments which are being performed to try and identify improved rice varieties.
几乎我们所有的食物最终都依赖于光合作用的过程,通过光合作用,大气中的二氧化碳利用阳光的能量被固定成单糖。这一过程主要发生在植物的叶片中。虽然光合作用的生物化学过程是高度保守的(即,不同植物的叶片形状非常相似),不同物种之间甚至同一物种内的叶片形状都非常多变,这取决于环境条件。叶片的形状对光合作用很重要,因为它将直接影响光合作用的效率。例如,大气中的二氧化碳必须首先通过叶片表面的小孔(气孔)进入叶片,然后通过空气空间穿过叶片内部,然后到达叶绿体所在的细胞,这是光合作用发生的地方。尽管这些距离看起来很小,但二氧化碳运动的内部途径的差异会对光合作用的效率产生重大影响。该项目的目的是了解更多关于光合作用效率和叶片内部细胞结构之间联系的规则。通过对这些规律的进一步了解,我们将更有能力选择能够更有效地进行光合作用的新植物品种。为了实现这一目标,我们将首先使用模式植物拟南芥。这是最先进的实验室植物,我们已经开发了工具,使我们能够操纵这种叶子的细胞结构是一种精确和可控的方式。因此,我们将产生具有各种改变的细胞结构的植物。然后,我们将分析这些架构使用先进的成像技术,称为微型计算机断层扫描。这将为我们提供一些参数的定量数据,这些参数可能会影响树叶中二氧化碳的流动。我们还将分析相同的叶子,以研究它们进行光合作用的情况。通过结合这些数据,我们将能够,首先,测试已经提出的关于细胞结构对光合作用效率的重要性的想法。我们还将能够分析我们的数据,以寻找新的结构,这些结构可以提高光合作用的效率,但不会对叶片产生不利的连锁影响,例如水分流失率。这种对细胞结构、光合作用和生理学的协调有序的分析将有助于确定与这些因素相关的基本规则。最后,通过与菲律宾国际水稻研究所(IRRI)的同事联系,(一个主要的水稻研究中心,世界上最重要的农作物)我们将研究从我们实验室工厂获得的数据是否有助于筛选实验,这些实验正在进行,以尝试和鉴定改良的水稻品种。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigating the microstructure of plant leaves in 3D with lab-based X-ray computed tomography.
- DOI:10.1186/s13007-018-0367-7
- 发表时间:2018
- 期刊:
- 影响因子:5.1
- 作者:Mathers AW;Hepworth C;Baillie AL;Sloan J;Jones H;Lundgren M;Fleming AJ;Mooney SJ;Sturrock CJ
- 通讯作者:Sturrock CJ
MOESM3 of Investigating the microstructure of plant leaves in 3D with lab-based X-ray computed tomography
MOESM3 使用基于实验室的 X 射线计算机断层扫描研究植物叶片的 3D 微观结构
- DOI:10.6084/m9.figshare.7333133
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Mathers A
- 通讯作者:Mathers A
MOESM1 of Investigating the microstructure of plant leaves in 3D with lab-based X-ray computed tomography
MOESM1 使用基于实验室的 X 射线计算机断层扫描研究植物叶片的 3D 微观结构
- DOI:10.6084/m9.figshare.7333106
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Mathers A
- 通讯作者:Mathers A
Cell density and airspace patterning in the leaf can be manipulated to increase leaf photosynthetic capacity.
- DOI:10.1111/tpj.13727
- 发表时间:2017-12
- 期刊:
- 影响因子:0
- 作者:Lehmeier C;Pajor R;Lundgren MR;Mathers A;Sloan J;Bauch M;Mitchell A;Bellasio C;Green A;Bouyer D;Schnittger A;Sturrock C;Osborne CP;Rolfe S;Mooney S;Fleming AJ
- 通讯作者:Fleming AJ
MOESM2 of Investigating the microstructure of plant leaves in 3D with lab-based X-ray computed tomography
MOESM2 使用基于实验室的 X 射线计算机断层扫描研究植物叶片的 3D 微观结构
- DOI:10.6084/m9.figshare.7333118
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Mathers A
- 通讯作者:Mathers A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew James Fleming其他文献
Andrew James Fleming的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew James Fleming', 18)}}的其他基金
Innovation in plant and soil sciences to tackle critical global challenges
植物和土壤科学创新应对全球严峻挑战
- 批准号:
BB/X01827X/1 - 财政年份:2023
- 资助金额:
$ 56.26万 - 项目类别:
Research Grant
Shape Shifting Stomata: The Role of Geometry in Plant Cell Function
变形气孔:几何形状在植物细胞功能中的作用
- 批准号:
BB/T005041/1 - 财政年份:2020
- 资助金额:
$ 56.26万 - 项目类别:
Research Grant
A 3D Model of Photosynthesis to Inform Breeding for Improved Rice Performance in a Changing Climate
光合作用 3D 模型为育种提供信息,以提高气候变化下的水稻性能
- 批准号:
BB/N013719/1 - 财政年份:2016
- 资助金额:
$ 56.26万 - 项目类别:
Research Grant
相似海外基金
Investigating assembly dynamics of a bacterial photosynthetic system and its impact on light-harvesting efficiency
研究细菌光合系统的组装动力学及其对光捕获效率的影响
- 批准号:
2317015 - 财政年份:2023
- 资助金额:
$ 56.26万 - 项目类别:
Standard Grant
Why are there many c subunits in photosynthetic ATP synthase? Analysis of structural motif and ATP synthesis efficiency
为什么光合ATP合酶中有很多c亚基?
- 批准号:
23K05702 - 财政年份:2023
- 资助金额:
$ 56.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating photosynthetic efficiency and nutrient use in marine microalgae (provisional- for admin. purposes only)
研究海洋微藻的光合效率和养分利用(临时-仅用于管理目的)
- 批准号:
2887783 - 财政年份:2023
- 资助金额:
$ 56.26万 - 项目类别:
Studentship
Boosting photosynthetic efficiency using a plant nanobionics approach
使用植物纳米仿生学方法提高光合作用效率
- 批准号:
DP220102729 - 财政年份:2022
- 资助金额:
$ 56.26万 - 项目类别:
Discovery Projects
Research proposal: Engineering chloroplast genomes for enhanced photosynthetic efficiency
研究提案:改造叶绿体基因组以提高光合作用效率
- 批准号:
2446492 - 财政年份:2020
- 资助金额:
$ 56.26万 - 项目类别:
Studentship
ERA-CAPS: Collaborative Research: Thylakoid ion flux-Linking photosynthetic efficiency with osmotic stress response
ERA-CAPS:合作研究:类囊体离子通量-将光合效率与渗透胁迫响应联系起来
- 批准号:
1847382 - 财政年份:2018
- 资助金额:
$ 56.26万 - 项目类别:
Standard Grant
Genetic manipulation of photosynthetic efficiency to increase strawberry yields Increasing
光合作用效率的遗传操纵以提高草莓产量
- 批准号:
2153063 - 财政年份:2018
- 资助金额:
$ 56.26万 - 项目类别:
Studentship
Realising increased photosynthetic efficiency to increase strawberry yields
提高光合作用效率以提高草莓产量
- 批准号:
BB/S507192/1 - 财政年份:2018
- 资助金额:
$ 56.26万 - 项目类别:
Training Grant
ERA-CAPS: Collaborative Research: Thylakoid ion flux-Linking photosynthetic efficiency with osmotic stress response
ERA-CAPS:合作研究:类囊体离子通量-将光合效率与渗透胁迫响应联系起来
- 批准号:
1847193 - 财政年份:2018
- 资助金额:
$ 56.26万 - 项目类别:
Standard Grant
Flux4LIVES_Thylakoid ion flux-Linking photosynthetic efficiency with osmotic stress response
Flux4LIVES_类囊体离子通量-将光合效率与渗透胁迫响应联系起来
- 批准号:
355293141 - 财政年份:2018
- 资助金额:
$ 56.26万 - 项目类别:
Research Grants