A new model of stomatal function
气孔功能的新模型
基本信息
- 批准号:BB/Y001257/1
- 负责人:
- 金额:$ 77.53万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Plants need to draw water up from the soil to the shoots. They do this by losing water vapour via small, controllable pores on the leaf surface, termed stomata. Open stomata allow plants to pull water throughout the plant and, at the same time, they allow carbon dioxide into the leaf where it is used for photosynthesis, the process by which all our food is made. However, if stomata were always open this would lead to catastrophic water loss, wilting, and eventual death of the plant. Therefore, plants continually adjust their stomata, making sure that they are open enough to allow the plant to grow when conditions are good, but closed when there is the danger of losing too much water. Due to their critical role in plants, how stomata work has been a topic of extensive research for over 150 years. Most of this work has focussed on the two cells (guard cells) between which the stomatal pore is formed, leading to the widely accepted paradigm that these cells swell and deflate via the gain or loss of water, and that this change of guard cell size and shape is the primary mechanism by which stomatal pores open and close. Our recent research, using 3-dimensional imaging, has revealed that cells neighbouring the guard cells also undergo very large changes in size and shape in response to triggers known to close stomata. In addition, our imaging experiments have shown that the guard cells themselves undergo a much more complicated change in shape than has generally been described. Taken together, our new results suggest that the classical text-book descriptions do not fully capture the mechanism by which changes of cell size and shape lead to stomatal opening and closing. In particular, our new findings suggest that a combination of guard cell and neighbouring epidermal cell responses is required for a full and efficient mechanism for stomatal pore opening and closure. As well as providing a new insight into a classical and fundamental aspect of plant biology, these data may open new paths to optimising or improving stomatal performance, leading to new approaches to reducing crop water requirements and improving drought tolerance, major challenges for agriculture in a changing global environment.To test our ideas, we will use a combination of advanced imaging and computational modelling techniques, combined with an array of genetic resources. For example, we will expand our present investigations where we have looked at two known triggers of stomatal closure to see whether the guard cell/neighbouring cell response that we have observed reflects a general aspect of stomatal function. We will then use a variety of approaches to alter either neighbouring cell viability or responsiveness to stomatal opening/closure triggers, testing the idea that neighbouring cell function is required for full stomatal function. These same approaches will also be used to alter the guard cell shape response that we have observed, testing the idea that this specific shape change is intimately connected with the mechanism of stomatal pore opening and closure. Throughout the project we will create computational models of the stomatal systems that we are investigating. These models, which will be informed by our experimental results, will provide a strong theoretical underpinning to the project, helping us both to interpret our experiments, and allowing us to design further experiments to test our ideas on the mechanism by which both guard cells and their neighbouring cells work together in the opening and closure of stomata.The improved understanding of stomatal mechanics gained through this research could, in the future, aid the production of more resilient crops that are better suited to growth under climate change.
植物需要从土壤到芽。他们通过在叶子表面上的小毛孔(称为气孔)失去水蒸气来做到这一点。开放的气孔使植物可以在整个植物中拉出水,同时它们可以将二氧化碳进入用于光合作用的叶片,这是我们所有食物的过程。但是,如果始终敞开气孔,这将导致灾难性的水分流失,枯萎和植物的最终死亡。因此,植物不断调节气孔,确保其开放量足以使植物在条件良好时生长,但是在损失过多水的危险时关闭。由于它们在植物中的关键作用,气孔工作如何成为150多年来广泛研究的话题。这项工作的大部分都集中在形成气孔孔之间的两个细胞(后卫细胞)上,从而导致这些细胞通过水的获益或水分膨胀和放气的广泛接受范式,并且警卫细胞的大小和形状的这种变化是气孔孔打开和关闭的主要机制。我们最近使用三维成像的研究表明,邻近警卫细胞的细胞在响应已知可关闭气孔的触发因素方面也经历了很大的大小和形状变化。此外,我们的成像实验表明,警卫细胞本身的形状变化要复杂得多,而不是通常所描述的。综上所述,我们的新结果表明,经典的教科书描述并未完全捕获细胞大小和形状变化导致气孔开放和关闭的机制。特别是,我们的新发现表明,对于孔隙孔口和闭合的完整有效机制,需要防护细胞和相邻表皮细胞反应的组合。除了提供对植物生物学的经典和基本方面的新见解外,这些数据还可能为优化或改善气孔绩效开辟新的途径,从而为减少农作物水的需求和改善干旱耐受性,为农业对农业的主要挑战提供新的方法,在不断变化的全球环境中对我们进行了不断变化的想法,我们将使用先进的想象力和计算模型的组合来进行组合,从而融合了综合技术。例如,我们将扩大目前的研究,其中我们研究了两个已知的气孔闭合触发器,以查看我们观察到的后卫细胞/相邻细胞响应是否反映了气孔功能的一般方面。然后,我们将使用各种方法来改变相邻的细胞活力或对气孔开放/闭合触发器的响应性,从而测试完整气孔功能所需的相邻细胞函数的想法。这些相同的方法还将用于改变我们观察到的后卫细胞形状响应,以测试这种特定形状变化与气孔孔口开口和闭合的机理密切相关的想法。在整个项目中,我们将创建我们正在研究的气孔系统的计算模型。这些模型将通过我们的实验结果告知,将为项目提供强大的理论基础,帮助我们俩解释我们的实验,并允许我们设计进一步的实验,以测试我们对警卫单元及其邻近细胞在机制中的想法,通过这些机制,通过这种机制,可以在井口开放和封闭的范围内进行更多的研究,从而可以更好地促进该研究,从而可以更好地促进该研究,从而可以提高这种启动的机制,从而使未来的机械师理解,这是在未来的发展。在气候变化下。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew James Fleming其他文献
Andrew James Fleming的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew James Fleming', 18)}}的其他基金
Innovation in plant and soil sciences to tackle critical global challenges
植物和土壤科学创新应对全球严峻挑战
- 批准号:
BB/X01827X/1 - 财政年份:2023
- 资助金额:
$ 77.53万 - 项目类别:
Research Grant
Shape Shifting Stomata: The Role of Geometry in Plant Cell Function
变形气孔:几何形状在植物细胞功能中的作用
- 批准号:
BB/T005041/1 - 财政年份:2020
- 资助金额:
$ 77.53万 - 项目类别:
Research Grant
A 3D Model of Photosynthesis to Inform Breeding for Improved Rice Performance in a Changing Climate
光合作用 3D 模型为育种提供信息,以提高气候变化下的水稻性能
- 批准号:
BB/N013719/1 - 财政年份:2016
- 资助金额:
$ 77.53万 - 项目类别:
Research Grant
Optimising Photosynthetic Efficiency via Leaf Structure
通过叶子结构优化光合效率
- 批准号:
BB/J004065/1 - 财政年份:2012
- 资助金额:
$ 77.53万 - 项目类别:
Research Grant
相似国自然基金
旱区盐渍化农田考虑气孔对水盐响应的生态水文过程模型与模拟
- 批准号:52309068
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
陆面过程模式叶片最优气孔导度模型的研制
- 批准号:42375164
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
高原低气压大温差环境引气混凝土气孔结构全过程演化模型及影响机制
- 批准号:52308242
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Shan-Chen多相流LBM耦合显微气孔生长的共晶相场模型模拟研究
- 批准号:52161002
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
温带树种水力结构介导的气孔导度水分胁迫响应机制及其对森林碳水通量模型的改进
- 批准号:32171873
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
相似海外基金
Formulation of a model for the budgets of heat, water vapor, and carbon dioxide with a regelation and soil
制定具有调节和土壤的热量、水蒸气和二氧化碳收支模型
- 批准号:
13650651 - 财政年份:2001
- 资助金额:
$ 77.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modeling of structures.of CO_2, water vapor and heat transfers between terrestrial ecosystem and atmosphere
陆地生态系统与大气之间CO_2、水蒸气和热传递的结构建模
- 批准号:
11480130 - 财政年份:1999
- 资助金额:
$ 77.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Study on Modelling of Stomatal Conductance
气孔导度建模研究
- 批准号:
09650649 - 财政年份:1997
- 资助金额:
$ 77.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of the model of estimating evapotranspiration using climate data and vegetation factors.
开发利用气候数据和植被因素估算蒸散量的模型。
- 批准号:
08458143 - 财政年份:1996
- 资助金额:
$ 77.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)