A new model of stomatal function

气孔功能的新模型

基本信息

  • 批准号:
    BB/Y001257/1
  • 负责人:
  • 金额:
    $ 77.53万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Plants need to draw water up from the soil to the shoots. They do this by losing water vapour via small, controllable pores on the leaf surface, termed stomata. Open stomata allow plants to pull water throughout the plant and, at the same time, they allow carbon dioxide into the leaf where it is used for photosynthesis, the process by which all our food is made. However, if stomata were always open this would lead to catastrophic water loss, wilting, and eventual death of the plant. Therefore, plants continually adjust their stomata, making sure that they are open enough to allow the plant to grow when conditions are good, but closed when there is the danger of losing too much water. Due to their critical role in plants, how stomata work has been a topic of extensive research for over 150 years. Most of this work has focussed on the two cells (guard cells) between which the stomatal pore is formed, leading to the widely accepted paradigm that these cells swell and deflate via the gain or loss of water, and that this change of guard cell size and shape is the primary mechanism by which stomatal pores open and close. Our recent research, using 3-dimensional imaging, has revealed that cells neighbouring the guard cells also undergo very large changes in size and shape in response to triggers known to close stomata. In addition, our imaging experiments have shown that the guard cells themselves undergo a much more complicated change in shape than has generally been described. Taken together, our new results suggest that the classical text-book descriptions do not fully capture the mechanism by which changes of cell size and shape lead to stomatal opening and closing. In particular, our new findings suggest that a combination of guard cell and neighbouring epidermal cell responses is required for a full and efficient mechanism for stomatal pore opening and closure. As well as providing a new insight into a classical and fundamental aspect of plant biology, these data may open new paths to optimising or improving stomatal performance, leading to new approaches to reducing crop water requirements and improving drought tolerance, major challenges for agriculture in a changing global environment.To test our ideas, we will use a combination of advanced imaging and computational modelling techniques, combined with an array of genetic resources. For example, we will expand our present investigations where we have looked at two known triggers of stomatal closure to see whether the guard cell/neighbouring cell response that we have observed reflects a general aspect of stomatal function. We will then use a variety of approaches to alter either neighbouring cell viability or responsiveness to stomatal opening/closure triggers, testing the idea that neighbouring cell function is required for full stomatal function. These same approaches will also be used to alter the guard cell shape response that we have observed, testing the idea that this specific shape change is intimately connected with the mechanism of stomatal pore opening and closure. Throughout the project we will create computational models of the stomatal systems that we are investigating. These models, which will be informed by our experimental results, will provide a strong theoretical underpinning to the project, helping us both to interpret our experiments, and allowing us to design further experiments to test our ideas on the mechanism by which both guard cells and their neighbouring cells work together in the opening and closure of stomata.The improved understanding of stomatal mechanics gained through this research could, in the future, aid the production of more resilient crops that are better suited to growth under climate change.
植物需要从土壤中吸取水分使其长出新芽。它们通过叶子表面的小而可控的气孔(称为气孔)来失去水蒸气。开放的气孔允许植物将水吸入整个植物,同时,它们允许二氧化碳进入叶子,用于光合作用,这是我们所有食物的制造过程。然而,如果气孔总是打开,这将导致灾难性的水分流失,枯萎,并最终死亡的植物。因此,植物不断地调整它们的气孔,确保它们在条件良好时足够开放以允许植物生长,但在有失去太多水分的危险时关闭。由于它们在植物中的关键作用,气孔如何工作一直是150多年来广泛研究的主题。大部分的工作都集中在两个细胞(保卫细胞)之间的气孔形成,导致广泛接受的范例,这些细胞膨胀和收缩通过获得或损失的水,这种变化的保卫细胞的大小和形状是气孔打开和关闭的主要机制。我们最近的研究,使用三维成像,已经揭示了邻近保卫细胞的细胞也会在大小和形状上发生非常大的变化,以响应已知的关闭气孔的触发器。此外,我们的成像实验表明,保卫细胞本身经历了比通常描述的更复杂的形状变化。综上所述,我们的新结果表明,经典的教科书描述没有完全捕捉细胞大小和形状的变化导致气孔打开和关闭的机制。特别是,我们的新发现表明,保卫细胞和相邻的表皮细胞反应的组合是需要一个完整的和有效的机制气孔开闭。除了为植物生物学的经典和基础方面提供新的见解外,这些数据还可能为优化或改善气孔性能开辟新的途径,从而导致减少作物需水量和提高耐旱性的新方法,这是农业在不断变化的全球环境中面临的主要挑战。为了测试我们的想法,我们将结合使用先进的成像和计算建模技术,再加上一系列的遗传资源。例如,我们将扩大我们目前的调查,我们已经在两个已知的触发气孔关闭,看看是否保卫细胞/相邻细胞的反应,我们观察到的反映气孔功能的一般方面。然后,我们将使用各种方法来改变相邻细胞的活力或响应气孔打开/关闭触发器,测试的想法,相邻细胞的功能是必需的完整的气孔功能。这些相同的方法也将被用来改变保卫细胞形状的反应,我们已经观察到,测试的想法,这种特定的形状变化是密切相关的气孔开闭的机制。在整个项目中,我们将创建我们正在研究的气孔系统的计算模型。这些模型将由我们的实验结果提供信息,将为该项目提供强有力的理论支持,帮助我们解释我们的实验,并允许我们设计进一步的实验来测试我们关于保卫细胞及其相邻细胞在气孔打开和关闭中共同工作的机制的想法。通过这项研究获得的对气孔力学的更好理解可以,在未来,帮助生产更适应气候变化的更有弹性的作物。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew James Fleming其他文献

Andrew James Fleming的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew James Fleming', 18)}}的其他基金

Innovation in plant and soil sciences to tackle critical global challenges
植物和土壤科学创新应对全球严峻挑战
  • 批准号:
    BB/X01827X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 77.53万
  • 项目类别:
    Research Grant
Shape Shifting Stomata: The Role of Geometry in Plant Cell Function
变形气孔:几何形状在植物细胞功能中的作用
  • 批准号:
    BB/T005041/1
  • 财政年份:
    2020
  • 资助金额:
    $ 77.53万
  • 项目类别:
    Research Grant
A 3D Model of Photosynthesis to Inform Breeding for Improved Rice Performance in a Changing Climate
光合作用 3D 模型为育种提供信息,以提高气候变化下的水稻性能
  • 批准号:
    BB/N013719/1
  • 财政年份:
    2016
  • 资助金额:
    $ 77.53万
  • 项目类别:
    Research Grant
Optimising Photosynthetic Efficiency via Leaf Structure
通过叶子结构优化光合效率
  • 批准号:
    BB/J004065/1
  • 财政年份:
    2012
  • 资助金额:
    $ 77.53万
  • 项目类别:
    Research Grant

相似国自然基金

基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
运用3D打印和生物反应器构建仿生尿道模型探索Hippo-YAP信号通路调控尿道损伤修复的机制研究
  • 批准号:
    82370684
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
基于影像代谢重塑可视化的延胡索酸水合酶缺陷型肾癌危险性分层模型的研究
  • 批准号:
    82371912
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
半参数空间自回归面板模型的有效估计与应用研究
  • 批准号:
    71961011
  • 批准年份:
    2019
  • 资助金额:
    16.0 万元
  • 项目类别:
    地区科学基金项目
高频数据波动率统计推断、预测与应用
  • 批准号:
    71971118
  • 批准年份:
    2019
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
人胆囊源CD63+细胞的干性特征与分化特性的研究
  • 批准号:
    31970753
  • 批准年份:
    2019
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
  • 批准号:
    71771224
  • 批准年份:
    2017
  • 资助金额:
    49.0 万元
  • 项目类别:
    面上项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
  • 批准号:
    81771933
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
凯莱流形上的几何流
  • 批准号:
    11771301
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 77.53万
  • 项目类别:
    Studentship
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326020
  • 财政年份:
    2024
  • 资助金额:
    $ 77.53万
  • 项目类别:
    Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326021
  • 财政年份:
    2024
  • 资助金额:
    $ 77.53万
  • 项目类别:
    Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
  • 批准号:
    2419343
  • 财政年份:
    2024
  • 资助金额:
    $ 77.53万
  • 项目类别:
    Standard Grant
EAGER: Liutex-based Sub-Grid Model for Large Eddy Simulation of Turbulent Flow
EAGER:基于 Liutex 的湍流大涡模拟子网格模型
  • 批准号:
    2422573
  • 财政年份:
    2024
  • 资助金额:
    $ 77.53万
  • 项目类别:
    Standard Grant
CAREER: Adapting the Fluid Projection Method to Model Elasto-plastic Materials
职业:采用流体投影方法来模拟弹塑性材料
  • 批准号:
    2427204
  • 财政年份:
    2024
  • 资助金额:
    $ 77.53万
  • 项目类别:
    Continuing Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
  • 批准号:
    2307253
  • 财政年份:
    2024
  • 资助金额:
    $ 77.53万
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
  • 批准号:
    2307251
  • 财政年份:
    2024
  • 资助金额:
    $ 77.53万
  • 项目类别:
    Standard Grant
CAREER: Towards a comprehensive model of seismicity throughout the seismic cycle
职业:建立整个地震周期地震活动的综合模型
  • 批准号:
    2339556
  • 财政年份:
    2024
  • 资助金额:
    $ 77.53万
  • 项目类别:
    Continuing Grant
AUC-GRANTED: Advancing Transformation of the Research Enterprise through Shared Resource Support Model for Collective Impact and Synergistic Effect.
AUC 授予:通过共享资源支持模型实现集体影响和协同效应,推进研究企业转型。
  • 批准号:
    2341110
  • 财政年份:
    2024
  • 资助金额:
    $ 77.53万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了