Combining structure and function in the nicotinic superfamily: the single-channel activation mechanism for the prokaryotic model channel ELIC

烟碱超家族结构与功能的结合:原核模型通道 ELIC 的单通道激活机制

基本信息

  • 批准号:
    BB/J005312/1
  • 负责人:
  • 金额:
    $ 50.33万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

The purpose of our work is to understand how ion channels function as molecules. The key to this is to know the 3-D structure of the channel (by X-ray crystallography) and to find out how this structure moves when the channel is activated, mainly by recording its electrical activity. It is rarely possible to get both sorts of information for the same molecule. New data mean that this is now possible for the group of channels we work on.Ion channels are proteins coded in our genome and are essential components of many cells in our bodies. For instance, they allow cells to communicate with each other at cell-to-cell junctions called synapses. This is essential not only in the brain but also to in the rest of our bodies where it allows the appropriate commands to reach muscles in our limbs and to regulate our blood pressure and heart rate. Channels also allow each neurone to process the information it receives from other neurones. Channels are important for normal human physiology and for disease. Mutations in the genes that code for channels can damage channel function and produce inherited human disease, such as cystic fibrosis. In addition to that, many drugs used for common diseases or in anaesthesia act by binding to channels. In particular, the group of channels that we study, the nicotinic superfamily, are targeted by sleeping pills, drugs for epilepsy, nicotine in tobacco and some insecticides. There are two main sources of information about channels: the first is X-ray crystallography, which provides us with information about the shape of the protein and the second is electrophysiology, which measures the electrical signal the channel produces. In the most advanced form, which is our special expertise, this technique detects the current that passes through a single protein molecule in real time, even though it is very small (more than a billion times smaller than the current in a kettle). This technique is very useful, because it allows us to measure the speed with which molecular events in the function of the channel occur. Hence we can understand channel function precisely as a chemical reaction, quantifying each step, from the binding of the neurotransmitter to the opening of the channel. By doing this in channels in the nicotinic group, we have found how tightly neurotransmitters and drugs bind to the protein when it is active or inactive and why some drugs act more strongly than others. Ideally we should study the structure and the function of the SAME channel. This is not easy because channels are difficult to crystallize, and so far we have good structures only for three channels in this group (GLIC, ELIC and GluCl). Of these, GLIC produces electrical signals that are too small for good electrophysiology. As for GluCl, we don't know how good its signal is (the structure has literally just been published). A potential problem with GluCl is that it does not open like all other channels in the group do, in response to a neurotransmitter-like compound, but it requires TWO different substances, binding to different places, so we don't know how good a model it will be.Until now ELIC was thought not to be able to open. Other scientists have now discovered the right substances that activate ELIC, and it turns out to open well and to give an excellent, big signal. We want to apply the single-molecule recording that is our special skill to ELIC, so that we can understand how it functions as a molecule. Once we have that, we can push our understanding much further, because we can refer to precise structural information (available for ELIC) in interpreting the effect of drugs and the effect of mutations in the channel. This is basic research but it is what is needed if we want to explain what bits of the molecule change and how they move when the channel is activated, where exactly drugs bind to the protein and how we should modify the structure of drugs in order to make them more effective.
我们工作的目的是了解离子通道如何作为分子发挥作用。其中的关键是了解通道的三维结构(通过X射线晶体学),并找出当通道被激活时该结构如何移动,主要是通过记录其电活动。几乎不可能同时获得同一分子的两种信息。新的数据意味着这对我们研究的通道组来说现在是可能的。离子通道是我们基因组中编码的蛋白质,是我们体内许多细胞的基本组成部分。例如,它们允许细胞在称为突触的细胞与细胞连接处相互通信。这不仅对大脑至关重要,而且对我们身体的其他部分也至关重要,它允许适当的命令到达我们四肢的肌肉并调节我们的血压和心率。通道还允许每个神经元处理它从其他神经元接收的信息。经络对人体正常生理和疾病都很重要。编码通道的基因突变会破坏通道功能,并产生遗传性人类疾病,如囊性纤维化。除此之外,许多用于常见疾病或麻醉的药物通过与通道结合而起作用。特别是,我们研究的通道组,烟碱超家族,是安眠药,癫痫药物,烟草中的尼古丁和一些杀虫剂的目标。关于通道的信息主要有两个来源:第一个是X射线晶体学,它为我们提供了关于蛋白质形状的信息;第二个是电生理学,它测量通道产生的电信号。在最先进的形式,这是我们的特殊专长,这项技术检测电流通过一个单一的蛋白质分子在真实的时间,即使它是非常小的(超过十亿倍小于电流在一个水壶)。这项技术非常有用,因为它允许我们测量通道功能中分子事件发生的速度。因此,我们可以将通道功能精确地理解为一种化学反应,量化从神经递质结合到通道开放的每一步。通过在烟碱组的通道中这样做,我们发现了神经递质和药物在蛋白质活跃或不活跃时与蛋白质的结合程度,以及为什么有些药物比其他药物作用更强。理想情况下,我们应该研究呼吸道的结构和功能。这并不容易,因为通道难以结晶,并且到目前为止,我们仅对该组中的三个通道(GLIC、ELIC和GluCl)具有良好的结构。其中,GLIC产生的电信号对于良好的电生理学来说太小了。至于GluCl,我们不知道它的信号有多好(结构刚刚公布)。GluCl的一个潜在问题是,它不像该组中所有其他通道那样打开,响应神经递质样化合物,但它需要两种不同的物质,结合到不同的地方,所以我们不知道它将是一个多么好的模型。直到现在,ELIC被认为不能打开。其他科学家现在已经发现了激活ELIC的正确物质,结果证明它能很好地打开,并发出很好的大信号。我们希望将单分子记录技术应用于ELIC,这是我们的专长,这样我们就可以了解它作为一个分子是如何发挥作用的。一旦我们有了它,我们就可以进一步推动我们的理解,因为我们可以参考精确的结构信息(可用于ELIC)来解释药物的作用和通道突变的作用。这是基础研究,但如果我们想解释当通道被激活时分子的哪些部分发生变化以及它们如何移动,药物与蛋白质结合的确切位置以及我们应该如何修改药物的结构以使它们更有效,这就是我们所需要的。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ELIC channel activation and block by propylamine
丙胺激活和阻断 ELIC 通道
Activation Mechanism of Elic by Propylamine
丙胺激活 Elic 的机制
  • DOI:
    10.1016/j.bpj.2013.11.3036
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Marabelli A
  • 通讯作者:
    Marabelli A
Inhibition of the prokaryotic pentameric ligand-gated ion channel ELIC by divalent cations.
  • DOI:
    10.1371/journal.pbio.1001429
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Zimmermann I;Marabelli A;Bertozzi C;Sivilotti LG;Dutzler R
  • 通讯作者:
    Dutzler R
Probing the activation mechanism of ELIC, a model channel for the nicotinic superfamily
探讨烟碱超家族模型通道 ELIC 的激活机制
ELIC channel activation in response to agonist concentration jumps
ELIC 通道激活响应激动剂浓度跳跃
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lucia Sivilotti其他文献

The Activation Mechanism of Rat α3 Homomeric Glycine Receptors
  • DOI:
    10.1016/j.bpj.2012.11.3524
  • 发表时间:
    2013-01-29
  • 期刊:
  • 影响因子:
  • 作者:
    Alessandro Marabelli;Mirko Moroni;Remigijus Lape;Lucia Sivilotti
  • 通讯作者:
    Lucia Sivilotti
ELIC Channels Activate Slowly in Response to Agonist Concentration Jumps
  • DOI:
    10.1016/j.bpj.2011.11.638
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Alessandro Marabelli;Remigijus Lape;Lucia Sivilotti
  • 通讯作者:
    Lucia Sivilotti
Conformation Changes Before Opening And The Activation Mechanism In Glycine And Nicotinic Receptors
  • DOI:
    10.1016/j.bpj.2008.12.3700
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lucia Sivilotti
  • 通讯作者:
    Lucia Sivilotti
Channel Blocking Properties Of Tetramethylammonium At The Human Muscle Acetylcholine Receptor
  • DOI:
    10.1016/j.bpj.2008.12.765
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Remigijus Lape;David Colquhoun;Lucia Sivilotti
  • 通讯作者:
    Lucia Sivilotti
The Activation Mechanism of the Rat Homomeric alpha2 Glycine Receptor
  • DOI:
    10.1016/j.bpj.2009.12.3866
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Paraskevi Krashia;Remigijus Lape;Lucia Sivilotti
  • 通讯作者:
    Lucia Sivilotti

Lucia Sivilotti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lucia Sivilotti', 18)}}的其他基金

Single molecule quantification of the activation, biophysics and pharmacology of GlyREM, a new structural model for pentameric ligand-gated channels
GlyREM 的激活、生物物理学和药理学的单分子定量,五聚体配体门控通道的新结构模型
  • 批准号:
    MR/R009074/1
  • 财政年份:
    2018
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Research Grant
Probing the dynamics of agonist drug interaction with Cys-loop channels by single-molecule recording
通过单分子记录探讨激动剂药物与 Cys 环通道相互作用的动力学
  • 批准号:
    MR/J007110/1
  • 财政年份:
    2012
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Research Grant

相似国自然基金

Rh-N4位点催化醇类氧化反应的微观机制与构效关系研究
  • 批准号:
    22302208
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
体内亚核小体图谱的绘制及其调控机制研究
  • 批准号:
    32000423
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
CTCF/cohesin介导的染色质高级结构调控DNA双链断裂修复的分子机制研究
  • 批准号:
    32000425
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
多层次纳米叠层块体复合材料的仿生设计、制备及宽温域增韧研究
  • 批准号:
    51973054
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
异染色质修饰通过调控三维基因组区室化影响机体应激反应的分子机制
  • 批准号:
    31970585
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
骨髓间充质干细胞成骨成脂分化过程中染色质三维构象改变与转录调控分子机制研究
  • 批准号:
    31960136
  • 批准年份:
    2019
  • 资助金额:
    40.0 万元
  • 项目类别:
    地区科学基金项目
染色质三维结构等位效应的亲代传递研究
  • 批准号:
    31970586
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
染色质三维构象新型调控因子的机制研究
  • 批准号:
    31900431
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
转座因子调控多能干细胞染色质三维结构中的作用
  • 批准号:
    31970589
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
磷酸化和可变剪切修饰影响Bnip3调控线粒体自噬和细胞凋亡的结构及功能研究
  • 批准号:
    31670742
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Combining structural, biophysical and in vivo techniques to probe structure/function of stem cell signalling receptor, Notch
结合结构、生物物理和体内技术来探测干细胞信号受体Notch的结构/功能
  • 批准号:
    2898935
  • 财政年份:
    2023
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Studentship
Combining information from multiple circadian activity rhythm metrics to optimally detect mild cognitive impairment using a consumer wearable
结合多个昼夜节律活动指标的信息,使用消费者可穿戴设备以最佳方式检测轻度认知障碍
  • 批准号:
    10300129
  • 财政年份:
    2021
  • 资助金额:
    $ 50.33万
  • 项目类别:
Combining information from multiple circadian activity rhythm metrics to optimally detect mild cognitive impairment using a consumer wearable
结合多个昼夜节律活动指标的信息,使用消费者可穿戴设备以最佳方式检测轻度认知障碍
  • 批准号:
    10478935
  • 财政年份:
    2021
  • 资助金额:
    $ 50.33万
  • 项目类别:
Hip Fracture Prediction by Combining Fall Risk, Impact Loads and Bone Strength
通过结合跌倒风险、冲击载荷和骨强度来预测髋部骨折
  • 批准号:
    10176353
  • 财政年份:
    2020
  • 资助金额:
    $ 50.33万
  • 项目类别:
Randomized controlled trial evaluating an innovative community-based intervention combining group-based exercise and behavioral health skills-training for older adults with painful knee osteoarthritis
随机对照试验评估基于社区的创新干预措施,结合团体锻炼和行为健康技能培训,治疗患有疼痛性膝骨关节炎的老年人
  • 批准号:
    9924433
  • 财政年份:
    2019
  • 资助金额:
    $ 50.33万
  • 项目类别:
Combining synucleinopathy and mitochondrial deficits in a novel mouse model of Parkinsons disease
在帕金森病的新型小鼠模型中结合突触核蛋白病和线粒体缺陷
  • 批准号:
    10531950
  • 财政年份:
    2019
  • 资助金额:
    $ 50.33万
  • 项目类别:
Randomized controlled trial evaluating an innovative community-based intervention combining group-based exercise and behavioral health skills-training for older adults with painful knee osteoarthritis
随机对照试验评估基于社区的创新干预措施,结合团体锻炼和行为健康技能培训,治疗患有疼痛性膝骨关节炎的老年人
  • 批准号:
    9759629
  • 财政年份:
    2019
  • 资助金额:
    $ 50.33万
  • 项目类别:
Randomized controlled trial evaluating an innovative community-based intervention combining group-based exercise and behavioral health skills-training for older adults with painful knee osteoarthritis
随机对照试验评估基于社区的创新干预措施,结合团体锻炼和行为健康技能培训,治疗患有疼痛性膝骨关节炎的老年人
  • 批准号:
    10403500
  • 财政年份:
    2019
  • 资助金额:
    $ 50.33万
  • 项目类别:
Randomized controlled trial evaluating an innovative community-based intervention combining group-based exercise and behavioral health skills-training for older adults with painful knee osteoarthritis
随机对照试验评估基于社区的创新干预措施,结合团体锻炼和行为健康技能培训,治疗患有疼痛性膝骨关节炎的老年人
  • 批准号:
    10623291
  • 财政年份:
    2019
  • 资助金额:
    $ 50.33万
  • 项目类别:
Combining genome, function, and phenotype to define the cell type specific gene regulatory architecture of idiopathic pulmonary fibrosis
结合基因组、功能和表型来定义特发性肺纤维化的细胞类型特异性基因调控架构
  • 批准号:
    10541161
  • 财政年份:
    2019
  • 资助金额:
    $ 50.33万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了