Probing the dynamics of agonist drug interaction with Cys-loop channels by single-molecule recording

通过单分子记录探讨激动剂药物与 Cys 环通道相互作用的动力学

基本信息

  • 批准号:
    MR/J007110/1
  • 负责人:
  • 金额:
    $ 68.56万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Ion channels are proteins that act as "nanoswitches" to translate voltage or chemical stimuli into electrical currents. They are essential to many bodily functions, including information processing in neurones and cell-to cell communication at synapses outside the brain which allow nerve impulses to move muscles and regulate blood pressure and heart rate. Unsurprisingly, inherited channel mutations can produce human disease, from cystic fibrosis to neurological conditions. Channels are targeted by many drugs. The nicotinic-type channels we work on mediate the effects of sleeping pills, drugs for epilepsy, nicotine, alcohol, insecticides and antiparasitic drugs. If we were better at designing drugs to activate or modulate nicotinic channel function, they could be useful in other hard-to-treat conditions, from chronic pain to spasticity after stroke, especially if we could exploit the great diversity of channel subtypes to design agents selective for single subtypes. To this day, drugs are discovered by large scale screening of chemicals to find if they are effective on a human drug receptor. The process is expensive and wasteful, and few new drugs become available every year. Instead of that, it would be ideal to be able to design chemicals to have a specific action on a particular human channel. For this we need to understand two steps: how a chemical binds to the channel and how it then changes the shape and function of the channel protein. Part of the problem is that, working as a switch, the channel itself changes shape and we don't know how this affects the binding of the drug.This is what we want to find out. At UCL we perfected a technique to see and interpret the tiny current (more than a billion times smaller than the current in a kettle) produced by one channel protein. This analysis is the only one that can tell us how tightly the drug binds to different states of the protein and how quickly the protein moves between these different states, with and without the drug. We will use in our work the glycine channel as a model for the nicotinic family. This channel has ideal properties for single molecule recording and has recently allowed us to see why some drugs are less effective than others in turning the receptor on, a result we found to be applicable to other nicotinic channels. We will extend our work and obtain these measurements for chemicals that activate the receptor, and differ from each other in their chemical structure in a systematic way. We will also change the protein itself, by mutating appropriate positions. Combining this information will allow us to see where the drugs "touch" the protein most closely. Glycine channels are also the mammalian channel that is closest to a well-resolved X-ray structure (that of an invertebrate channel, GluCl, published in June 2011). This makes it possible to use the structural data in relation to channel function. At Oxford we will model the structure of the glycine channel by homology to GluCl by computer calculations and use this work to plan and interpret the experiments on channel function in terms of channel 3-D shape. Ultimately our work should lead us to understand what features in a chemical determine its affinity and efficacy for a nicotinic channel and how the different parts of the channel move with activation. It should give us indications on how the structure of drugs should be modified, in order to make them more effective. Hence this fundamental research will be useful to lay the basis for future drug development and hopefully enable rational drug design, in the glycine receptor itself (a therapeutic orphan) and in the nicotinic superfamily as a whole. Our results will also help our drug industry colleagues interpret their data that come from the quick assay techniques used by in high-throughput screening of libraries of compounds, such as binding and macroscopic functional measurements.
离子通道是一种蛋白质,它充当“纳米开关”,将电压或化学刺激转化为电流。它们对许多身体功能都是必不可少的,包括神经元的信息处理和大脑外突触的细胞对细胞通信,这些突触允许神经冲动移动肌肉,调节血压和心率。毫不奇怪,遗传的通道突变会导致人类疾病,从囊性纤维化到神经疾病。渠道是许多药物的靶子。我们研究的尼古丁类通道调节安眠药、治疗癫痫的药物、尼古丁、酒精、杀虫剂和抗寄生虫药物的效果。如果我们能更好地设计药物来激活或调节尼古丁通道功能,它们可能会对其他难以治疗的疾病有用,从慢性疼痛到中风后的痉挛,特别是如果我们能够利用通道亚型的巨大多样性来设计针对单一亚型的选择性药物。直到今天,药物是通过对化学物质进行大规模筛选来发现的,以确定它们是否对人类药物受体有效。这一过程既昂贵又浪费,而且每年几乎没有新药可用。取而代之的是,能够设计出对特定人类通道具有特定作用的化学物质将是理想的。为此,我们需要了解两个步骤:化学物质如何与通道结合,以及它如何改变通道蛋白的形状和功能。部分问题是,作为一个开关,通道本身会改变形状,我们不知道这会如何影响药物的结合。这是我们想要找出的。在伦敦大学学院,我们完善了一项技术,可以观察和解释由单通道蛋白质产生的微小电流(比水壶中的电流小10亿倍以上)。这个分析是唯一可以告诉我们药物与蛋白质不同状态的结合有多紧密,以及蛋白质在这些不同状态之间移动的速度,无论有没有药物。我们将在我们的工作中使用甘氨酸通道作为尼古丁家族的模型。这种通道具有理想的单分子记录特性,最近使我们能够看到为什么一些药物在打开受体方面比其他药物效果更差,我们发现这一结果适用于其他尼古丁通道。我们将扩大我们的工作,并获得这些测量激活受体的化学物质,并以系统的方式在化学结构上相互不同。我们还将通过突变适当的位置来改变蛋白质本身。结合这些信息,我们可以看到药物与蛋白质的接触最紧密的地方。甘氨酸通道也是最接近分辨率良好的X射线结构的哺乳动物通道(2011年6月发表的无脊椎动物通道GluCl)。这使得能够使用与通道功能相关的结构数据。在牛津大学,我们将通过计算机计算来模拟甘氨酸通道的结构,并利用这项工作来计划和解释通道三维形状方面的通道功能实验。最终,我们的工作应该引导我们理解一种化学物质中的哪些特征决定了它对尼古丁通道的亲和力和有效性,以及该通道的不同部分是如何随着激活而移动的。它应该给我们提供一些迹象,说明应该如何修改药物的结构,以便使它们更有效。因此,这项基础研究将有助于为未来的药物开发奠定基础,并有望在甘氨酸受体本身(治疗性孤儿)和整个尼古丁超家族中进行合理的药物设计。我们的结果还将帮助我们的制药业同行解释他们的数据,这些数据来自于在化合物文库的高通量筛选中使用的快速分析技术,例如结合和宏观功能测量。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Alternative Binding Mode of Full and Partial Agonists in a Pentameric Ligand-Gated Ion Channel Stabilises Loop C in an Open Conformation
五聚体配体门控离子通道中完全和部分激动剂的替代结合模式使环 C 稳定在开放构象中
  • DOI:
    10.1016/j.bpj.2017.11.1694
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Dämgen M
  • 通讯作者:
    Dämgen M
The Kinetic Properties of the Human Glycine Receptor in Response to Different Agonists
人甘氨酸受体响应不同激动剂的动力学特性
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Hurdiss Elliot J.
  • 通讯作者:
    Hurdiss Elliot J.
Interaction of the Glycine Receptor Alpha 1 Binding Site with Partial Agonists
甘氨酸受体 Alpha 1 结合位点与部分激动剂的相互作用
  • DOI:
    10.1016/j.bpj.2013.11.3047
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Greiner T
  • 通讯作者:
    Greiner T
Interactions of the human glycine receptor binding site with different agonists: a single channel approach
人甘氨酸受体结合位点与不同激动剂的相互作用:单通道方法
Mechanism of loop C closure in the glycine receptor and its relevance for partial agonism
甘氨酸受体中C环闭合机制及其与部分激动的相关性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lucia Sivilotti其他文献

The Activation Mechanism of Rat α3 Homomeric Glycine Receptors
  • DOI:
    10.1016/j.bpj.2012.11.3524
  • 发表时间:
    2013-01-29
  • 期刊:
  • 影响因子:
  • 作者:
    Alessandro Marabelli;Mirko Moroni;Remigijus Lape;Lucia Sivilotti
  • 通讯作者:
    Lucia Sivilotti
ELIC Channels Activate Slowly in Response to Agonist Concentration Jumps
  • DOI:
    10.1016/j.bpj.2011.11.638
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Alessandro Marabelli;Remigijus Lape;Lucia Sivilotti
  • 通讯作者:
    Lucia Sivilotti
Conformation Changes Before Opening And The Activation Mechanism In Glycine And Nicotinic Receptors
  • DOI:
    10.1016/j.bpj.2008.12.3700
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lucia Sivilotti
  • 通讯作者:
    Lucia Sivilotti
Channel Blocking Properties Of Tetramethylammonium At The Human Muscle Acetylcholine Receptor
  • DOI:
    10.1016/j.bpj.2008.12.765
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Remigijus Lape;David Colquhoun;Lucia Sivilotti
  • 通讯作者:
    Lucia Sivilotti
The effect of nicotine and cytisine on3H-acetylcholine release from cortical slices of guinea-pig brain
  • DOI:
    10.1007/bf00634252
  • 发表时间:
    1985-11-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Lorenzo Beani;Clementina Bianchi;Lena Nilsson;Agneta Nordberg;Luciana Romanelli;Lucia Sivilotti
  • 通讯作者:
    Lucia Sivilotti

Lucia Sivilotti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lucia Sivilotti', 18)}}的其他基金

Single molecule quantification of the activation, biophysics and pharmacology of GlyREM, a new structural model for pentameric ligand-gated channels
GlyREM 的激活、生物物理学和药理学的单分子定量,五聚体配体门控通道的新结构模型
  • 批准号:
    MR/R009074/1
  • 财政年份:
    2018
  • 资助金额:
    $ 68.56万
  • 项目类别:
    Research Grant
Combining structure and function in the nicotinic superfamily: the single-channel activation mechanism for the prokaryotic model channel ELIC
烟碱超家族结构与功能的结合:原核模型通道 ELIC 的单通道激活机制
  • 批准号:
    BB/J005312/1
  • 财政年份:
    2012
  • 资助金额:
    $ 68.56万
  • 项目类别:
    Research Grant

相似国自然基金

发展基因编码的荧光探针揭示趋化因子CXCL10的时空动态及其调控机制
  • 批准号:
    32371150
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
  • 批准号:
    LY21E080004
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
磁性薄膜和磁性纳米结构中的自旋动力学研究
  • 批准号:
    11174131
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
星系结构基本单元星团的研究
  • 批准号:
    11043006
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
星系恒星与气体的动力学演化
  • 批准号:
    11073025
  • 批准年份:
    2010
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
在我们的门前发掘化石——利用中国即将开展的巡天来研究银河系的演化
  • 批准号:
    11043005
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
物体运动对流场扰动的数学模型研究
  • 批准号:
    51072241
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
弦场论及Tachyon动力学
  • 批准号:
    10705008
  • 批准年份:
    2007
  • 资助金额:
    15.0 万元
  • 项目类别:
    青年科学基金项目
微分遍历理论和廖山涛的一些方法的应用
  • 批准号:
    10671006
  • 批准年份:
    2006
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

The Role of Intermediate Conformations in G Protein-coupled Receptor Signaling
中间构象在 G 蛋白偶联受体信号传导中的作用
  • 批准号:
    10635763
  • 财政年份:
    2023
  • 资助金额:
    $ 68.56万
  • 项目类别:
Structural basis for regulation of beta2 adrenergic receptor signaling by the dynamic post-translational modification S-palmitoylation
动态翻译后修饰S-棕榈酰化调节β2肾上腺素受体信号传导的结构基础
  • 批准号:
    10603466
  • 财政年份:
    2023
  • 资助金额:
    $ 68.56万
  • 项目类别:
Intracellular signaling mechanisms underlying opioid modulation of pain
阿片类药物调节疼痛的细胞内信号机制
  • 批准号:
    10607143
  • 财政年份:
    2023
  • 资助金额:
    $ 68.56万
  • 项目类别:
Identifying the Interactions between Animal Toxins and Human nAChRs: The Role of Snake PLA2 in Interacting with nAChR alpha Subunits
识别动物毒素与人类 nAChR 之间的相互作用:蛇 PLA2 在与 nAChR α 亚基相互作用中的作用
  • 批准号:
    10818654
  • 财政年份:
    2023
  • 资助金额:
    $ 68.56万
  • 项目类别:
Probing Mechanisms of Polycystin-1 Regulation Using Peptide Modulators Designed by Sequence- and Structure-Based Learning
使用基于序列和结构的学习设计的肽调制器探索多囊蛋白-1 调节机制
  • 批准号:
    10917464
  • 财政年份:
    2023
  • 资助金额:
    $ 68.56万
  • 项目类别:
Dynamic changes in PIP2 binding sites and their impact on axonal targeting and function of epilepsy-associated KCNQ/Kv7 channels
PIP2 结合位点的动态变化及其对癫痫相关 KCNQ/Kv7 通道的轴突靶向和功能的影响
  • 批准号:
    10744934
  • 财政年份:
    2023
  • 资助金额:
    $ 68.56万
  • 项目类别:
Investigating the Critical Role of Glia In Peripheral Organ Development and Physiology
研究神经胶质细胞在周围器官发育和生理学中的关键作用
  • 批准号:
    10676501
  • 财政年份:
    2023
  • 资助金额:
    $ 68.56万
  • 项目类别:
Novel mechanisms in the control of cAMP dynamics
控制 cAMP 动力学的新机制
  • 批准号:
    10733273
  • 财政年份:
    2023
  • 资助金额:
    $ 68.56万
  • 项目类别:
Discovery and development of GPR3 agonists for nicotine cessation
发现和开发用于戒烟的 GPR3 激动剂
  • 批准号:
    10825123
  • 财政年份:
    2023
  • 资助金额:
    $ 68.56万
  • 项目类别:
Activity of Minimal NMDA Receptors
最小 NMDA 受体的活性
  • 批准号:
    10743773
  • 财政年份:
    2023
  • 资助金额:
    $ 68.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了