Single molecule quantification of the activation, biophysics and pharmacology of GlyREM, a new structural model for pentameric ligand-gated channels

GlyREM 的激活、生物物理学和药理学的单分子定量,五聚体配体门控通道的新结构模型

基本信息

  • 批准号:
    MR/R009074/1
  • 负责人:
  • 金额:
    $ 49.66万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Ion channels are present in all our cells. The channels we work on open when a neurotransmitter or a drug binds to them, and mediate fast cell-to-cell communication at synapses, including those in the brain. Channels are also important in disease: mutations in channel genes can cause heritable human disease, such as cystic fibrosis. Also, many drugs used for common diseases or in anaesthesia act by binding to channels. For instance, the group of channels that we study, the nicotinic superfamily, are targeted by sleeping pills, drugs for epilepsy, the nicotine in tobacco and some insecticides. The aim of our research is to understand how ion channels function as molecules. For this we need to know their 3-D structure and how this changes when the channel is activated. Structure is usually obtained by crystallography, and function by recording the channel's electrical activity. For channels, it is slow and difficult to get good crystals that can be used for structure. It is even harder to get multiple structures that show how the channels change shape as they activate. Furthermore, some of the channels that can be imaged do not give good functional data, so integrating structure and function is difficult.Progress in a technique that does not require crystals, cryo electronmicroscopy (EM) is changing this, and is beginning to give structures for GlyR-EM, a form of the very group of channels my lab specialises on, glycine receptors. We propose to work on this form of channel, co-ordinating our work with the US group that is doing the structural work, to obtain the maximum insight.At UCL, we perfected a technique to see and interpret the tiny currents (a billion times smaller than the current used by a kettle) produced by one channel molecule. This work is needed, because it is the only way to measure how tightly neurotransmitters and drugs bind to the channel in its different shapes, and how quickly the channel moves between these different states, with and without the drug. It is also the only technique that can measure accurately how strong (in pharmacologist's jargon, how efficacious) a drug is, because it measures how good the drug is at keeping the channel open, when it has bound. In glycine channels, analysis of these data allowed us to find out that strong drugs are strong because they are effective at producing the initial conformational change. After that, the channel opens in a similar manner for all drugs. This research started on glycine channels, but the finding is now known to apply to all nicotinic channels that have been tested. It is obviously important to understand how the channel structure moves in this initial step and for that we need to integrate our functional work with that of the structural biologists that can image the channel.Our pilot data show that the GlyR-EM channel gives good electrical signals, and is slightly different from the various forms of human glycine receptor we have worked with. This is not a problem, on the contrary, the differences give us information on what determines the functional properties of the channel. This is particularly true for glycine receptors, where the amino-acid sequence of the different forms is very similar, making the causes of the differences in function potentially easier to identify.Finally Cryo-EM is carried out in conditions that are different from the ones we normally would choose for electrical recording, and there is no information on channel function in these conditions (low temperature and holding potential, long drug applications). We must do these experiments so that we can identify and interpret the new structures. Importantly, the UCL functional work will allow us to indicate to our US collaborators which new structural experiments would be the most useful and informative.This is basic research but, ultimately it can give us information on how we should modify the structure of drugs in order to make them more effective.
离子通道存在于我们所有的细胞中。当神经递质或药物与之结合时,我们研究的通道就会打开,并在突触(包括大脑中的突触)上介导细胞间的快速通信。通道在疾病中也很重要:通道基因的突变可导致遗传性人类疾病,如囊性纤维化。此外,许多用于常见病或麻醉的药物通过与通道结合而起作用。例如,我们研究的一组通道,尼古丁超家族,是安眠药、癫痫药物、烟草中的尼古丁和一些杀虫剂的目标。我们研究的目的是了解离子通道如何作为分子发挥作用。为此,我们需要知道它们的三维结构,以及当通道被激活时这种结构是如何变化的。结构通常通过晶体学获得,功能通过记录通道的电活动获得。对于通道来说,获得可以用于结构的好的晶体是缓慢而困难的。要得到多个结构来显示通道在激活时如何改变形状就更难了。此外,一些可以成像的通道不能提供很好的功能数据,因此结构和功能的整合是困难的。一项不需要晶体的技术的进步,低温电子显微镜(EM)正在改变这一点,并开始给出GlyR-EM的结构,GlyR-EM是我实验室专门研究的一组通道的形式,甘氨酸受体。我们建议在这种形式的渠道上工作,与正在进行结构工作的美国小组协调我们的工作,以获得最大的洞察力。在伦敦大学学院,我们完善了一项技术,可以观察和解释一个通道分子产生的微小电流(比水壶使用的电流小10亿倍)。这项工作是必要的,因为这是测量神经递质和药物在不同形状的通道上结合的紧密程度,以及在有和没有药物的情况下,通道在这些不同状态之间移动的速度的唯一方法。它也是唯一一种可以准确测量药物强度(用药理学家的行话来说,就是药效)的技术,因为它可以测量药物在结合后保持通道畅通的能力。在甘氨酸通道中,对这些数据的分析使我们发现强效药物之所以强效,是因为它们能有效地产生初始构象变化。之后,所有药物的通道都以类似的方式打开。这项研究开始于甘氨酸通道,但现在已知这一发现适用于所有已测试的尼古丁通道。很明显,了解通道结构在初始阶段是如何移动的是很重要的,为此我们需要将我们的功能工作与结构生物学家的工作结合起来,后者可以对通道进行成像。我们的试验数据表明,GlyR-EM通道提供良好的电信号,与我们研究过的各种形式的人类甘氨酸受体略有不同。这不是问题,相反,这些差异为我们提供了决定通道功能属性的信息。对于甘氨酸受体来说尤其如此,不同形式的氨基酸序列非常相似,这使得功能差异的原因可能更容易识别。最后,Cryo-EM是在与我们通常选择的电记录不同的条件下进行的,并且在这些条件下(低温和保持电位,长期药物应用)没有通道功能的信息。我们必须做这些实验,以便我们能够识别和解释新的结构。重要的是,伦敦大学学院的功能工作将使我们能够向我们的美国合作者指出哪些新的结构实验将是最有用和信息丰富的。这是基础研究,但最终它可以为我们提供如何修改药物结构以使其更有效的信息。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanism of gating and partial agonist action in the glycine receptor
  • DOI:
    10.1101/786632
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jie Yu;Hongtao Zhu;R. Lape;T. Greiner;Rezvan Shahoei;Yuhang Wang;Juan Du;Wei Lü;Emad Tajkhorsh
  • 通讯作者:
    Jie Yu;Hongtao Zhu;R. Lape;T. Greiner;Rezvan Shahoei;Yuhang Wang;Juan Du;Wei Lü;Emad Tajkhorsh
A tale of ligands big and small: an update on how pentameric ligand-gated ion channels interact with agonists and proteins.
大大小小的配体的故事:五聚体配体门控离子通道如何与激动剂和蛋白质相互作用的最新信息。
  • DOI:
    10.1016/j.cophys.2017.12.012
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Pless SA
  • 通讯作者:
    Pless SA
Glycine receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database
IUPHAR/BPS 药理学指南数据库中的甘氨酸受体(版本 2019.4)
Aminomethanesulfonic acid illuminates the boundary between full and partial agonists of the pentameric glycine receptor.
氨基甲磺酸阐明了五聚甘氨酸受体的全部和部分激动剂之间的边界。
  • DOI:
    10.7554/elife.79148
  • 发表时间:
    2022-08-17
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Ivica, Josip;Zhu, Hongtao;Lape, Remigijus;Gouaux, Eric;Sivilotti, Lucia G.
  • 通讯作者:
    Sivilotti, Lucia G.
Glycine receptors (version 2020.4) in the IUPHAR/BPS Guide to Pharmacology Database
IUPHAR/BPS 药理学指南数据库中的甘氨酸受体(版本 2020.4)
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lucia Sivilotti其他文献

The Activation Mechanism of Rat α3 Homomeric Glycine Receptors
  • DOI:
    10.1016/j.bpj.2012.11.3524
  • 发表时间:
    2013-01-29
  • 期刊:
  • 影响因子:
  • 作者:
    Alessandro Marabelli;Mirko Moroni;Remigijus Lape;Lucia Sivilotti
  • 通讯作者:
    Lucia Sivilotti
ELIC Channels Activate Slowly in Response to Agonist Concentration Jumps
  • DOI:
    10.1016/j.bpj.2011.11.638
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Alessandro Marabelli;Remigijus Lape;Lucia Sivilotti
  • 通讯作者:
    Lucia Sivilotti
Conformation Changes Before Opening And The Activation Mechanism In Glycine And Nicotinic Receptors
  • DOI:
    10.1016/j.bpj.2008.12.3700
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lucia Sivilotti
  • 通讯作者:
    Lucia Sivilotti
Channel Blocking Properties Of Tetramethylammonium At The Human Muscle Acetylcholine Receptor
  • DOI:
    10.1016/j.bpj.2008.12.765
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Remigijus Lape;David Colquhoun;Lucia Sivilotti
  • 通讯作者:
    Lucia Sivilotti
The Activation Mechanism of the Rat Homomeric alpha2 Glycine Receptor
  • DOI:
    10.1016/j.bpj.2009.12.3866
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Paraskevi Krashia;Remigijus Lape;Lucia Sivilotti
  • 通讯作者:
    Lucia Sivilotti

Lucia Sivilotti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lucia Sivilotti', 18)}}的其他基金

Combining structure and function in the nicotinic superfamily: the single-channel activation mechanism for the prokaryotic model channel ELIC
烟碱超家族结构与功能的结合:原核模型通道 ELIC 的单通道激活机制
  • 批准号:
    BB/J005312/1
  • 财政年份:
    2012
  • 资助金额:
    $ 49.66万
  • 项目类别:
    Research Grant
Probing the dynamics of agonist drug interaction with Cys-loop channels by single-molecule recording
通过单分子记录探讨激动剂药物与 Cys 环通道相互作用的动力学
  • 批准号:
    MR/J007110/1
  • 财政年份:
    2012
  • 资助金额:
    $ 49.66万
  • 项目类别:
    Research Grant

相似国自然基金

中性粒细胞在体内条件下重编程为造血干祖细胞的研究
  • 批准号:
    92068101
  • 批准年份:
    2020
  • 资助金额:
    80.0 万元
  • 项目类别:
    重大研究计划
活细胞单分子成像定量研究EGFR内吞途径命运选择
  • 批准号:
    32000557
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Tousled like kinase介导青光眼中视网膜神经节细胞死亡的作用和机制
  • 批准号:
    32000518
  • 批准年份:
    2020
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
小分子化合物促进肝细胞增殖和肝脏再生的研究
  • 批准号:
    32000504
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
高效率单细胞分析微流控芯片的机理研究
  • 批准号:
    31970754
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
黏附分子ICAM-1对于肺癌细胞生存和凋亡的作用及机制研究
  • 批准号:
    31900536
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
SIRT1调控突变型p53肿瘤细胞死亡的分子机制研究
  • 批准号:
    31970689
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
亚纳米单分子定位技术研究化学修饰对蛋白-膜相互作用的干预
  • 批准号:
    91753104
  • 批准年份:
    2017
  • 资助金额:
    70.0 万元
  • 项目类别:
    重大研究计划
D-A类共轭聚合物晶界内部tie molecule构象调控
  • 批准号:
    51573185
  • 批准年份:
    2015
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目

相似海外基金

Identification and quantification of complex plant pathogens within heterogenous samples harnessing single molecule sequencing
利用单分子测序对异质样品中复杂的植物病原体进行鉴定和定量
  • 批准号:
    BB/V017608/1
  • 财政年份:
    2021
  • 资助金额:
    $ 49.66万
  • 项目类别:
    Research Grant
Direct observation and quantification of the assembly of Cas9 ribonucleoprotein complex and its activity on nucleosomes at single molecule resolution
单分子分辨率下直接观察和定量 Cas9“核糖核蛋白复合物”的组装及其对核小体的活性
  • 批准号:
    10224792
  • 财政年份:
    2019
  • 资助金额:
    $ 49.66万
  • 项目类别:
Super-resolved single-molecule imaging of nuclear proteins for quantification of phase separated behavior
核蛋白超分辨单分子成像,用于量化相分离行为
  • 批准号:
    18K14661
  • 财政年份:
    2018
  • 资助金额:
    $ 49.66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Control and quantification of interchromophoric coupling in single-molecule defined shape-persistent oligomers
单分子限定形状持久低聚物中发色团间偶联的控制和定量
  • 批准号:
    319559986
  • 财政年份:
    2016
  • 资助金额:
    $ 49.66万
  • 项目类别:
    Research Grants
Development of genome-wide digital quantification method for non-coding RNAs which has single-base identification and single-molecule level quantification
开发具有单碱基鉴定和单分子水平定量的非编码RNA全基因组数字定量方法
  • 批准号:
    15K14425
  • 财政年份:
    2015
  • 资助金额:
    $ 49.66万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
EAGER: Mobile-phone based single molecule imaging of DNA and length quantification to analyze copy-number variations in genome
EAGER:基于手机的 DNA 单分子成像和长度定量分析基因组中的拷贝数变异
  • 批准号:
    1444240
  • 财政年份:
    2014
  • 资助金额:
    $ 49.66万
  • 项目类别:
    Standard Grant
SGER: Flow field quantification in microfluidic mixing systems by single-molecule detection methods
SGER:通过单分子检测方法对微流体混合系统中的流场进行定量
  • 批准号:
    0820745
  • 财政年份:
    2008
  • 资助金额:
    $ 49.66万
  • 项目类别:
    Standard Grant
Quantification of molecular dynamics, numbers and interactions of multi-kind molecules by single molecule imaging in cells
通过细胞内单分子成像量化多种分子的分子动力学、数量和相互作用
  • 批准号:
    18370065
  • 财政年份:
    2006
  • 资助金额:
    $ 49.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Quantification of Biomolecules Based on Flow Cytometric Single-Molecule Detection and Sorting on a Microchip
基于流式细胞术单分子检测和微芯片分选的生物分子定量
  • 批准号:
    0352407
  • 财政年份:
    2004
  • 资助金额:
    $ 49.66万
  • 项目类别:
    Continuing Grant
Microfluidic setup for quantification of multivalent interactions and massive parallelization of single-molecule force spectroscopy: Unraveling virus-receptor interactions
用于量化多价相互作用和单分子力谱大规模并行化的微流体装置:揭示病毒-受体相互作用
  • 批准号:
    364654521
  • 财政年份:
  • 资助金额:
    $ 49.66万
  • 项目类别:
    Independent Junior Research Groups
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了