Bacterial chromosome structure and transcription
细菌染色体结构和转录
基本信息
- 批准号:BB/J006076/1
- 负责人:
- 金额:$ 66.83万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bacteria are microscopic free living organisms that are found nearly everywhere on earth, including in the human body. Their actions have big impacts on the environment at all levels and they also affect human health and happiness. Bacterial cells are organised in a different way to animal cells, notably with respect to how they handle their DNA. In animal cells, the DNA is packaged into individual chromosomes that are kept in a separate membrane-bound compartment of the cell called the nucleus. For most bacteria, their DNA consists of millions of base pairs in a single chromosome that is free in the main cell compartment. This creates a logistic problem since bacterial cells are small and, in order to fit the DNA into the cell, it has to be highly compacted by folding. Microscopy studies have shown that, in many bacteria, the chromosome is restricted to a part of the cell called the nucleoid. We are interested in how proteins interact with bacterial chromosome DNA in order to compact it into the nucleoid, and over a dozen different proteins that contribute to the compaction have now been identified. Whilst we understand the actions of many of these proteins when bound at individual DNA targets, we have little idea how these proteins act together on a bigger scale to organise DNA in the bacterial nucleoid.This proposal is prompted by the recent discovery of specific locations on the chromosome of a common bacterium, Escherichia coli, where the amount of bound protein is especially high. It has been suggested that these highly occupied targets act as the organising centres of the nucleoid by clustering together segments from different parts of the chromosome. It is thought that this clustering is essential to the compaction of the Escherichia coli chromosome and that similar mechanisms operate in most bacteria. Hence our aim is to identify the proteins that bind at these targets and start to build up a detailed protein occupancy map of the Escherichia coli chromosome. To achieve this, we will exploit a newly developed method called DNA sampling. Having identified the proteins that bind at different targets, we next want to build up a DNA proximity map by identifying chromosome segments that are far apart in the DNA sequence but clustered together in the 3-dimensional space of the nucleoid. One of the problems with doing this is that bacterial nucleoids are not fixed structures and each locus on the DNA may well make short-lived interactions with many other loci. Hence, to capture transient interactions, we will use a method called chromatin conformation capture, and, by combining it with high throughput sequencing, we will be able to record the different interactions. Taken together, this information will allow us to build up a picture of the different interactions that hold the Escherichia coli nucleoid together. Finally, we will investigate the possibility that the folding of gene DNA into a bacterial nucleoid affects its ability to be expressed. This is most likely because the folding restricts the accessibility of certain DNA elements that must be recognised by the proteins that initiate gene expression. We already have some preliminary data to show that this is the case for some of the regions of high protein binding. Hence, we are planning to use state-of-the-art fluorescence microscopy to find out where these transcriptionally silent loci are positioned in the nucleoid. These experiments will provide important information for modellers who want to predict patterns of expression from the DNA base sequence of any bacterium.
细菌是一种微观的自由生物体,几乎在地球上的任何地方都可以找到,包括人体。他们的行为对各个层面的环境都有很大的影响,也影响到人类的健康和幸福。细菌细胞的组织方式与动物细胞不同,特别是它们如何处理它们的DNA。在动物细胞中,DNA被包装成单独的染色体,这些染色体被保存在细胞的一个单独的膜结合区室中,称为细胞核。对于大多数细菌来说,它们的DNA由单个染色体中的数百万个碱基对组成,这些染色体在主细胞区室中是自由的。这就产生了一个逻辑问题,因为细菌细胞很小,为了将DNA装入细胞,它必须通过折叠高度压缩。显微镜研究表明,在许多细菌中,染色体被限制在细胞的一部分,称为类核。我们感兴趣的是蛋白质如何与细菌染色体DNA相互作用,以便将其压缩成类核,现在已经确定了十几种有助于压缩的不同蛋白质。虽然我们了解这些蛋白质结合在单个DNA靶点上时的作用,但我们对这些蛋白质如何在更大范围内共同作用以组织细菌类核中的DNA知之甚少,这一提议是由最近发现的一种常见细菌大肠杆菌染色体上的特定位置引起的,在该位置结合的蛋白质量特别高。有人提出,这些高度占据的靶点通过将来自染色体不同部分的片段聚集在一起而充当类核的组织中心。据认为,这种聚类是必不可少的压缩大肠杆菌染色体和类似的机制在大多数细菌中运作。因此,我们的目标是确定结合在这些目标的蛋白质,并开始建立一个详细的蛋白质占据图的大肠杆菌染色体。为了实现这一点,我们将利用一种新开发的称为DNA采样的方法。在确定了与不同靶点结合的蛋白质之后,我们接下来想通过识别在DNA序列中相距很远但在类核的三维空间中聚集在一起的染色体片段来构建DNA邻近图。这样做的一个问题是细菌类核不是固定的结构,DNA上的每个位点都可能与许多其他位点发生短暂的相互作用。因此,为了捕获瞬时相互作用,我们将使用一种称为染色质构象捕获的方法,并且通过将其与高通量测序相结合,我们将能够记录不同的相互作用。综合起来,这些信息将使我们能够建立一个不同的相互作用,使大肠杆菌类核在一起的图片。最后,我们将研究基因DNA折叠成细菌类核影响其表达能力的可能性。这很可能是因为折叠限制了某些DNA元件的可及性,而这些DNA元件必须被启动基因表达的蛋白质识别。我们已经有一些初步的数据表明,这是一些高蛋白结合区域的情况。因此,我们计划使用最先进的荧光显微镜来找出这些转录沉默位点位于类核中的位置。这些实验将为想要从任何细菌的DNA碱基序列预测表达模式的建模者提供重要信息。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Position effects on promoter activity in Escherichia coli and their consequences for antibiotic-resistance determinants.
大肠杆菌启动子活性的位置效应及其对抗生素耐药性决定因素的影响。
- DOI:10.1042/bst20180503
- 发表时间:2019
- 期刊:
- 影响因子:3.9
- 作者:Cooke K
- 通讯作者:Cooke K
Silencing of DNase Colicin E8 Gene Expression by a Complex Nucleoprotein Assembly Ensures Timely Colicin Induction.
- DOI:10.1371/journal.pgen.1005354
- 发表时间:2015-06
- 期刊:
- 影响因子:4.5
- 作者:Kamenšek S;Browning DF;Podlesek Z;Busby SJ;Žgur-Bertok D;Butala M
- 通讯作者:Butala M
Regulation of nrf operon expression in pathogenic enteric bacteria: sequence divergence reveals new regulatory complexity.
- DOI:10.1111/mmi.13647
- 发表时间:2017-05
- 期刊:
- 影响因子:3.6
- 作者:Godfrey RE;Lee DJ;Busby SJW;Browning DF
- 通讯作者:Browning DF
Chromosome position effects on gene expression in Escherichia coli K-12.
- DOI:10.1093/nar/gku828
- 发表时间:2014-10
- 期刊:
- 影响因子:14.9
- 作者:Bryant JA;Sellars LE;Busby SJ;Lee DJ
- 通讯作者:Lee DJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steve Busby其他文献
Kinked, curved or bent but certainly not going straight
扭结、弯曲或弯曲,但肯定不会笔直
- DOI:
- 发表时间:
1992 - 期刊:
- 影响因子:9.2
- 作者:
Steve Busby - 通讯作者:
Steve Busby
Steve Busby的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steve Busby', 18)}}的其他基金
Global Regulators in a Bacterial Pathogen and Virulence
细菌病原体和毒力的全球调节剂
- 批准号:
BB/W00285X/1 - 财政年份:2022
- 资助金额:
$ 66.83万 - 项目类别:
Research Grant
Understanding and exploiting regulation in pathogenic enteroaggregative Escherichia coli
了解和利用致病性肠聚集性大肠杆菌的调控
- 批准号:
BB/R017689/1 - 财政年份:2019
- 资助金额:
$ 66.83万 - 项目类别:
Research Grant
相似国自然基金
异染色质蛋白HP1与ATRX结合在有丝分裂期维护染色体稳定性的分子机制研究
- 批准号:32000499
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
用一种新的方法研究Bub1调控有丝分裂的分子机制
- 批准号:31970666
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
核酸酶LEM-3的生化性质与体内功能研究
- 批准号:31900509
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
癌症和神经系统失调中的CENP-A泛素化的细胞器间信号通路
- 批准号:31970665
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
基于CSSSLs的水稻粒形QTL qGS7-2的图位克隆和功能分析
- 批准号:31101131
- 批准年份:2011
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
中国人染色体19q13.2-3区域DNA修复等基因单核苷酸多态及其单体型与肺癌发生风险研究
- 批准号:30571016
- 批准年份:2005
- 资助金额:8.0 万元
- 项目类别:面上项目
中国棉铃虫核多角体病毒基因组库和分子进化
- 批准号:30540076
- 批准年份:2005
- 资助金额:8.0 万元
- 项目类别:专项基金项目
染色体端末端单链DNA的形成及其特殊结构与功能
- 批准号:30270314
- 批准年份:2002
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Chemical Biological Discovery of Lipid Virulence Factors in the Major Bacterial Pathogens
主要细菌病原体中脂质毒力因子的化学生物学发现
- 批准号:
10518252 - 财政年份:2022
- 资助金额:
$ 66.83万 - 项目类别:
Chemical Biological Discovery of Lipid Virulence Factors in the Major Bacterial Pathogens
主要细菌病原体中脂质毒力因子的化学生物学发现
- 批准号:
10651853 - 财政年份:2022
- 资助金额:
$ 66.83万 - 项目类别:
How bacterial SMC complexes organize chromosomes
细菌 SMC 复合体如何组织染色体
- 批准号:
10182533 - 财政年份:2021
- 资助金额:
$ 66.83万 - 项目类别:
How bacterial SMC complexes organize chromosomes
细菌 SMC 复合体如何组织染色体
- 批准号:
10362622 - 财政年份:2021
- 资助金额:
$ 66.83万 - 项目类别:
How bacterial SMC complexes organize chromosomes
细菌 SMC 复合体如何组织染色体
- 批准号:
10809856 - 财政年份:2021
- 资助金额:
$ 66.83万 - 项目类别:
How bacterial SMC complexes organize chromosomes
细菌 SMC 复合体如何组织染色体
- 批准号:
10594399 - 财政年份:2021
- 资助金额:
$ 66.83万 - 项目类别:
Molecular basis of bacterial chromosome segregation and organization
细菌染色体分离和组织的分子基础
- 批准号:
10799361 - 财政年份:2021
- 资助金额:
$ 66.83万 - 项目类别:
Molecular basis of bacterial chromosome segregation and organization
细菌染色体分离和组织的分子基础
- 批准号:
10277063 - 财政年份:2021
- 资助金额:
$ 66.83万 - 项目类别:
Form and function of the bacterial nucleoid: structural studies using cryo-ET
细菌核的形式和功能:使用冷冻电子断层扫描进行结构研究
- 批准号:
10534657 - 财政年份:2021
- 资助金额:
$ 66.83万 - 项目类别:
Control of topoisomerase activity during DNA replication by bacterial chromosome structuring proteins
细菌染色体结构蛋白在 DNA 复制过程中控制拓扑异构酶活性
- 批准号:
10379402 - 财政年份:2019
- 资助金额:
$ 66.83万 - 项目类别: