Global Regulators in a Bacterial Pathogen and Virulence
细菌病原体和毒力的全球调节剂
基本信息
- 批准号:BB/W00285X/1
- 负责人:
- 金额:$ 70.39万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Bacteria colonise almost every niche on earth and they have been thriving for billions of years. Biologists believe that the 'success' of bacterial life on earth is due to the ability of bacteria to express the right gene at the right time, thereby making the most of the particular environment where they are growing. To do this, they selectively express the necessary genes in any situation, and one of the main ways they do this is by the use of transcription factors. These are a specialised group of proteins, which, in response to a particular signal from the environment, interact at the regulatory region of specific genes, and either turn on or turn off their expression. Some bacteria are able to colonise humans and a small number of these cause disease. To a bacterium, a human host is "just" another environment, and, hence, thriving in a human environment requires the expression of certain genes whose expression is regulated by transcription factors. Most transcription factors affect the expression of just a handful of genes, however a small number affect hundreds of genes, one of the most well-known being the transcription factor called CRP. Working with common bacterial pathogens that cause human disease, we have found that CRP controls some of the genes responsible for disease. One of our main aims is to follow up on this observation and identify the full catalogue of genes that are regulated by CRP in these pathogens. We expect to find hundreds of targets, and so a second aim is to understand how CRP is distributed between these targets, and how this alters in response to changes in the environment. Some very recent research suggests the existence of other proteins that interact with CRP and alter its activity at the regulatory region of certain genes. We will pay particular attention to the genes that make bacteria dangerous to humans. Antibiotics are commonly used to treat harmful infections due to bacteria, but it is well-known that there is currently a big problem due to the appearance of resistant bacteria that are not killed by antibiotics. Hence, there is a need to find new antibacterial strategies that do not rely on antibiotics. In previous work with CRP, we have been able to construct a version of CRP (CRP-0) that has lost its ability to regulate gene expression, but is able to interfere with the activity of 'good' CRP in harmful bacteria. Some preliminary data has shown that we can use CRP-0 to 'disarm' a harmful bacterial strain and make it harmless. We plan to develop a vector for the delivery of CRP-0 and, because CRP is so widespread in bacteria, this will provide an option to 'neutralise' many different bacterial pathogens by 'disarming' them rather than killing them, thereby providing a therapy option. Previous research has shown that most bacteria that contain CRP also contain a second very similar transcription factor called FNR. FNR is important to allow bacteria to adapt to growth in the absence of oxygen, and we have found that, for some bacterial pathogens, infection is aided by the absence of oxygen. Hence, we plan to take a parallel approach with FNR, and identify its targets. Comparison of targets between harmful and harmless bacteria should tell us why the lack of oxygen promotes virulence. In addition, FNR derivatives which, like CRP-0, are handicapped in their ability to regulate gene expression, will provide us with a second option to interfere with the expression of bacterial genes that are needed for successful infection. Hence, our overall strategy is to discover the contribution of CRP and FNR to bacterial infections and to exploit what we find to pioneer an anti-bacterial strategy that does not depend on antibiotics.
细菌几乎侵占了地球上的每一个角落,并且它们已经繁衍了数十亿年。生物学家认为,细菌生命在地球上的成功是因为细菌能够在正确的时间表达正确的基因,从而最大限度地利用它们生长的特定环境。为了做到这一点,它们在任何情况下都有选择地表达必要的基因,而它们做到这一点的主要方式之一是使用转录因子。这些是一组特殊的蛋白质,它们响应来自环境的特定信号,在特定基因的调节区相互作用,或者开启或关闭它们的表达。一些细菌能够在人类中定居,其中一小部分细菌会导致疾病。对于细菌来说,人类宿主只是另一个环境,因此,在人类环境中茁壮成长需要某些基因的表达,这些基因的表达受到转录因子的调节。大多数转录因子只影响少数几个基因的表达,但也有一小部分影响数百个基因,其中最著名的是被称为CRP的转录因子。通过对导致人类疾病的常见细菌病原体的研究,我们发现CRP控制着一些导致疾病的基因。我们的主要目标之一是跟进这一观察结果,并确定这些病原体中由CRP调控的完整基因目录。我们希望找到数百个目标,因此第二个目标是了解CRP在这些目标之间是如何分布的,以及这种分布如何随着环境的变化而改变。最近的一些研究表明,存在其他与CRP相互作用的蛋白质,并在某些基因的调节区改变其活性。我们将特别关注使细菌对人类构成危险的基因。抗生素通常用于治疗细菌引起的有害感染,但众所周知,目前存在一个很大的问题,因为出现了不被抗生素杀死的耐药细菌。因此,有必要找到不依赖抗生素的新的抗菌策略。在以前的CRP工作中,我们已经能够构建一种CRP(CRP-0)的版本,它已经失去了调节基因表达的能力,但能够干扰有害细菌中“好的”CRP的活性。一些初步数据表明,我们可以使用CRP-0来解除有害细菌菌株的武装,使其无害。我们计划开发一种运送CRP-0的载体,由于CRP在细菌中非常普遍,这将提供一种选择,通过对许多不同的细菌病原体‘解除武装’而不是杀死它们,从而提供一种治疗选择。先前的研究表明,大多数含有CRP的细菌还含有第二个非常相似的转录因子,称为FNR。FNR对于让细菌在缺乏氧气的情况下适应生长很重要,我们发现,对于一些细菌病原体来说,缺乏氧气有助于感染。因此,我们计划采取与FNR平行的方法,并确定其目标。有害细菌和无害细菌之间的靶标比较应该告诉我们为什么缺氧会促进毒力。此外,像CRP-0一样在调节基因表达能力方面有缺陷的FNR衍生物,将为我们提供第二种选择来干扰成功感染所需的细菌基因的表达。因此,我们的总体战略是发现CRP和FNR对细菌感染的贡献,并利用我们发现的东西开创一种不依赖抗生素的抗菌策略。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Laboratory strains of Escherichia coli K-12: things are seldom what they seem.
- DOI:10.1099/mgen.0.000922
- 发表时间:2023-03
- 期刊:
- 影响因子:3.9
- 作者:Browning, Douglas F.;Hobman, Jon L.;Busby, Stephen J. W.
- 通讯作者:Busby, Stephen J. W.
Novel organisation and regulation of the pic promoter from enteroaggregative and uropathogenic Escherichia coli.
- DOI:10.1080/21505594.2022.2111754
- 发表时间:2022-12
- 期刊:
- 影响因子:5.2
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steve Busby其他文献
Kinked, curved or bent but certainly not going straight
扭结、弯曲或弯曲,但肯定不会笔直
- DOI:
- 发表时间:
1992 - 期刊:
- 影响因子:9.2
- 作者:
Steve Busby - 通讯作者:
Steve Busby
Steve Busby的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steve Busby', 18)}}的其他基金
Understanding and exploiting regulation in pathogenic enteroaggregative Escherichia coli
了解和利用致病性肠聚集性大肠杆菌的调控
- 批准号:
BB/R017689/1 - 财政年份:2019
- 资助金额:
$ 70.39万 - 项目类别:
Research Grant
Bacterial chromosome structure and transcription
细菌染色体结构和转录
- 批准号:
BB/J006076/1 - 财政年份:2012
- 资助金额:
$ 70.39万 - 项目类别:
Research Grant
相似海外基金
sRNAs: Critical yet overlooked regulators of bacterial denitrification
sRNA:细菌反硝化的关键但被忽视的调节因子
- 批准号:
BB/Y006607/1 - 财政年份:2024
- 资助金额:
$ 70.39万 - 项目类别:
Research Grant
The Evolution of Regulation: How Global Regulators Diverge in Different Bacterial Lineages
监管的演变:全球监管机构对不同细菌谱系的差异
- 批准号:
575887-2022 - 财政年份:2022
- 资助金额:
$ 70.39万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Virulence gene regulators of enteric bacterial pathogens: Determining the structural and functional mechanisms of small molecule and polypeptide inhibitors
肠道细菌病原体的毒力基因调节因子:确定小分子和多肽抑制剂的结构和功能机制
- 批准号:
10586700 - 财政年份:2022
- 资助金额:
$ 70.39万 - 项目类别:
Phase-variable epigenetic regulators in bacterial veterinary pathogens
细菌兽医病原体中的相变表观遗传调节因子
- 批准号:
DP180100976 - 财政年份:2018
- 资助金额:
$ 70.39万 - 项目类别:
Discovery Projects
The molecular mechanism of action of bacterial epigenetic regulators
细菌表观遗传调节因子作用的分子机制
- 批准号:
DP170104691 - 财政年份:2017
- 资助金额:
$ 70.39万 - 项目类别:
Discovery Projects
Targeting epigenetic regulators using bacterial macromolecule delivery
使用细菌大分子递送靶向表观遗传调节因子
- 批准号:
8919315 - 财政年份:2014
- 资助金额:
$ 70.39万 - 项目类别:
Identifying bacterial regulators of tumorigenesis
识别肿瘤发生的细菌调节因子
- 批准号:
8982222 - 财政年份:2014
- 资助金额:
$ 70.39万 - 项目类别:
Targeting epigenetic regulators using bacterial macromolecule delivery
使用细菌大分子递送靶向表观遗传调节因子
- 批准号:
9327990 - 财政年份:2014
- 资助金额:
$ 70.39万 - 项目类别:
Identifying bacterial regulators of tumorigenesis
识别肿瘤发生的细菌调节因子
- 批准号:
8814012 - 财政年份:2014
- 资助金额:
$ 70.39万 - 项目类别:
Targeting epigenetic regulators using bacterial macromolecule delivery
使用细菌大分子递送靶向表观遗传调节因子
- 批准号:
8766518 - 财政年份:2014
- 资助金额:
$ 70.39万 - 项目类别: