Recombination and the clearance of replicative blocks - to bypass or not to bypass?

重组和复制块的清除——绕过还是不绕过?

基本信息

  • 批准号:
    BB/J014826/1
  • 负责人:
  • 金额:
    $ 40.73万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

The ability of a cell to form two new daughter cells allows organisms to grow and reproduce. This process requires the copying of vast amounts of DNA so that each daughter receives an accurate copy of all the genetic information required for survival. Because of the importance of generating accurate copies of the DNA, organisms have evolved very complex DNA replication machines that reduce the chances of mistakes being made. Unfortunately, we now know that many obstacles are encountered by these replication machines that, if not overcome, can cause mistakes in the copying process. Such mistakes can lead to errors in the genetic information that can have fatal consequences.Proteins that coat the DNA form frequent obstacles to the DNA copying machinery. These proteins are essential in all organisms for maintaining, reading and packing the genetic information, and so cannot be avoided. Although the DNA replication machinery can successfully push off most of these proteins from the DNA to be copied, the sheer number of proteins bound to the DNA mean that occasionally the copying process is stopped in its tracks. However, a specific class of enzymes can repair and restart broken down DNA replication machines. It is clear that these recombination enzymes can help to copy DNA that is bound by proteins but how they do so remains unclear. One proposal is that if a DNA replication machine becomes blocked by a protein then recombination enzymes can restart DNA replication on the other side of the protein block. This pathway would skip over the block, allowing copying to continue, but would also result in genes near the protein block not being copied. Consequently the involvement of recombination enzymes could be seen as harmful, resulting in failure to copy all the genetic information needed by the two daughter cells to survive. Alternatively, we have proposed that recombination enzymes might simply restart DNA replication near to where it initially came to a halt. This might give the DNA replication machinery a second chance to push the blocking protein off the DNA and continue to copy all of the genetic information. Such a process might therefore provide a mechanism to ensure accurate copying of DNA coated with proteins.We will use the model bacterium E. coli to determine the roles of recombination enzymes in copying DNA coated with proteins. We know a great deal about the basic mechanisms of both DNA replication and recombination in E. coli, allowing us to analyse how these two very complicated processes interact. We will determine the mechanisms by which recombination enzymes can help DNA replication machines to move through protein blocks. We will also establish what dictates the balance between accurate and inaccurate recombination mechanisms to understand when such processes might generate potentially very harmful changes to the genetic material.The conflict between the need to copy DNA and the need to have proteins bound to the DNA is one that all organisms must somehow resolve. This work will address therefore exactly what drives the accumulation of mutations within genes and what mechanisms help to minimise this accumulation. Acquisition of mutations in the genetic material is the driving force of evolution but such mutations are frequently harmful rather than beneficial and so must be kept in check. This is illustrated by the importance of mutations in the acquisition of human genetic disorders and the development of cancer. Understanding fundamental mechanisms of DNA replication and recombination in E. coli has greatly advanced our knowledge of genetic stability in more complex organisms such as ourselves. We are now in a position to use E. coli to address the interplay between these critical processes, an interplay that is central to understanding how genes are copied in as accurate a manner as possible.
一个细胞形成两个新的子细胞的能力使生物体能够生长和繁殖。这个过程需要复制大量的DNA,以便每个女儿都能获得生存所需的所有遗传信息的准确副本。由于生成准确的DNA拷贝的重要性,生物体已经进化出非常复杂的DNA复制机器,以减少出错的机会。不幸的是,我们现在知道,这些复制机器遇到了许多障碍,如果不克服,可能会导致复制过程中的错误。这样的错误会导致遗传信息的错误,这可能会造成致命的后果。覆盖在DNA上的蛋白质经常会对DNA复制机制形成障碍。这些蛋白质在所有生物体中对于维持、阅读和包装遗传信息是必不可少的,因此是无法避免的。虽然DNA复制机制可以成功地将这些蛋白质中的大多数从要复制的DNA中分离出来,但与DNA结合的蛋白质的绝对数量意味着复制过程偶尔会停止。然而,一类特殊的酶可以修复和重新启动被破坏的DNA复制机器。很明显,这些重组酶可以帮助复制与蛋白质结合的DNA,但它们如何做到这一点仍不清楚。一种建议是,如果DNA复制机器被蛋白质阻断,那么重组酶可以在蛋白质阻断的另一侧重新启动DNA复制。这条通路会跳过这个区块,允许复制继续,但也会导致蛋白质区块附近的基因不被复制。因此,重组酶的参与可能被视为有害的,导致两个子细胞无法复制生存所需的所有遗传信息。或者,我们提出重组酶可能只是在DNA复制最初停止的地方重新开始复制。这可能会给DNA复制机制第二次机会,将阻断蛋白从DNA上推开,继续复制所有的遗传信息。因此,这样的过程可能提供了一种机制,以确保精确复制的DNA与蛋白质包被。以确定重组酶在复制蛋白质包被的DNA中的作用。我们对大肠杆菌中DNA复制和重组的基本机制有了很大的了解。让我们分析这两个非常复杂的过程是如何相互作用的。我们将确定重组酶可以帮助DNA复制机器通过蛋白质块移动的机制。我们还将建立精确和不精确的重组机制之间的平衡,以了解这种过程何时可能对遗传物质产生潜在的非常有害的变化。复制DNA的需要和蛋白质与DNA结合的需要之间的冲突是所有生物体都必须以某种方式解决的问题。因此,这项工作将确切地解决是什么驱动了基因内突变的积累,以及什么机制有助于最大限度地减少这种积累。遗传物质中突变的获得是进化的驱动力,但这种突变往往是有害的而不是有益的,因此必须加以控制。突变在人类遗传疾病的获得和癌症的发展中的重要性说明了这一点。了解大肠杆菌中DNA复制和重组的基本机制。大肠杆菌的研究极大地提高了我们对更复杂的生物体(如人类)遗传稳定性的认识。我们现在可以使用E。大肠杆菌来解决这些关键过程之间的相互作用,这种相互作用对于理解基因如何以尽可能准确的方式复制至关重要。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inhibiting translation elongation can aid genome duplication in Escherichia coli.
  • DOI:
    10.1093/nar/gkw1254
  • 发表时间:
    2017-03-17
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Myka KK;Hawkins M;Syeda AH;Gupta MK;Meharg C;Dillingham MS;Savery NJ;Lloyd RG;McGlynn P
  • 通讯作者:
    McGlynn P
The Balance between Recombination Enzymes and Accessory Replicative Helicases in Facilitating Genome Duplication.
  • DOI:
    10.3390/genes7080042
  • 发表时间:
    2016-07-29
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Syeda AH;Atkinson J;Lloyd RG;McGlynn P
  • 通讯作者:
    McGlynn P
Recombination and replication.
重组和复制。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter McGlynn其他文献

Recombinational repair and restart of damaged replication forks
受损复制叉的重组修复与重启
Acceptability and feasibility of point-of-care CD4 testing on HIV continuum of care in low and middle income countries: a systematic review
  • DOI:
    10.1186/s12913-016-1588-y
  • 发表时间:
    2016-08-02
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Minh D. Pham;Paul A. Agius;Lorena Romero;Peter McGlynn;David Anderson;Suzanne M. Crowe;Stanley Luchters
  • 通讯作者:
    Stanley Luchters
Performance of point-of-care CD4 testing technologies in resource-constrained settings: a systematic review and meta-analysis
  • DOI:
    10.1186/s12879-016-1931-2
  • 发表时间:
    2016-10-21
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Minh D. Pham;Paul A. Agius;Lorena Romero;Peter McGlynn;David Anderson;Suzanne M. Crowe;Stanley Luchters
  • 通讯作者:
    Stanley Luchters
Dynamical signatures of freezing: stable fluids, metastable fluids, and crystals.
冻结的动力学特征:稳定流体、亚稳态流体和晶体。
The purple bacterial photosynthetic unit
  • DOI:
    10.1007/bf00040996
  • 发表时间:
    1996-05-01
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Richard J. Cogdell;Paul K. Fyfe;Stuart J. Barrett;Stephen M. Prince;Andrew A. Freer;Neil W. Isaacs;Peter McGlynn;C. Neil Hunter
  • 通讯作者:
    C. Neil Hunter

Peter McGlynn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter McGlynn', 18)}}的其他基金

Speeding and stuttering: analysing the dynamics of DNA replication at the single molecule level
加速和口吃:在单分子水平上分析 DNA 复制的动态
  • 批准号:
    BB/K00168X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 40.73万
  • 项目类别:
    Research Grant
Why does transcription present a major barrier to genome duplication?
为什么转录是基因组复制的主要障碍?
  • 批准号:
    BB/I001859/2
  • 财政年份:
    2012
  • 资助金额:
    $ 40.73万
  • 项目类别:
    Research Grant
Why does transcription present a major barrier to genome duplication?
为什么转录是基因组复制的主要障碍?
  • 批准号:
    BB/I001859/1
  • 财政年份:
    2011
  • 资助金额:
    $ 40.73万
  • 项目类别:
    Research Grant
Avoiding replication trainwrecks - are accessory replicative helicases needed to underpin replication of protein-bound DNA?
避免复制失败——是否需要辅助复制解旋酶来支持蛋白质结合 DNA 的复制?
  • 批准号:
    BB/G005915/1
  • 财政年份:
    2009
  • 资助金额:
    $ 40.73万
  • 项目类别:
    Research Grant
Conflicts between DNA replication fork progression and transcriptional regulation
DNA复制叉进程与转录调控之间的冲突
  • 批准号:
    BB/C008316/1
  • 财政年份:
    2006
  • 资助金额:
    $ 40.73万
  • 项目类别:
    Research Grant
High performance motoring - replication fork movement in a complex environment
高性能驾驶 - 在复杂环境中复制叉子运动
  • 批准号:
    G0501626/1
  • 财政年份:
    2006
  • 资助金额:
    $ 40.73万
  • 项目类别:
    Research Grant

相似国自然基金

内质网–质膜互作在凋亡细胞磷脂酰丝氨酸外翻过程中的作用机制研究
  • 批准号:
    91954114
  • 批准年份:
    2019
  • 资助金额:
    76.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Omics approaches to decipher infection clearance and resolution in eukaryotic human pathogens
破译真核人类病原体感染清除和解决的组学方法
  • 批准号:
    502579
  • 财政年份:
    2024
  • 资助金额:
    $ 40.73万
  • 项目类别:
Resolving the Role of Brain Lymphatic Endothelial Cells in Sleep Dependent Brain Clearance
解决脑淋巴内皮细胞在睡眠依赖性脑清除中的作用
  • 批准号:
    BB/Y001206/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.73万
  • 项目类别:
    Research Grant
In vivo function-persistent polymersome nanoreactor with tumor-specific activation and safe clearance/metabolism for synergistic oxidation-chemo-immunotherapy
具有肿瘤特异性激活和安全清除/代谢作用的体内功能持久聚合物纳米反应器,用于协同氧化-化学-免疫治疗
  • 批准号:
    24K21109
  • 财政年份:
    2024
  • 资助金额:
    $ 40.73万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of Targeted Antipseudomonal Bactericidal Prodrugs
靶向抗假单胞菌杀菌前药的开发
  • 批准号:
    10678074
  • 财政年份:
    2023
  • 资助金额:
    $ 40.73万
  • 项目类别:
Mechanistic dissection of allosteric modulation and nonproteolytic chaperone activity of human insulin-degrading enzyme
人胰岛素降解酶变构调节和非蛋白水解伴侣活性的机制剖析
  • 批准号:
    10667987
  • 财政年份:
    2023
  • 资助金额:
    $ 40.73万
  • 项目类别:
ALDH2 inhibitors for the treatment of AUD
ALDH2抑制剂用于治疗AUD
  • 批准号:
    10664502
  • 财政年份:
    2023
  • 资助金额:
    $ 40.73万
  • 项目类别:
Effect of High Salt Diet on Proximal Tubular Sodium Reabsorption, Metabolic Stress, and Injury
高盐饮食对近端肾小管钠重吸收、代谢应激和损伤的影响
  • 批准号:
    10908784
  • 财政年份:
    2023
  • 资助金额:
    $ 40.73万
  • 项目类别:
Engineering Exosome for Pancreatic Cancer Targeting Therapies
用于胰腺癌靶向治疗的外泌体工程
  • 批准号:
    10803020
  • 财政年份:
    2023
  • 资助金额:
    $ 40.73万
  • 项目类别:
Astrocytic exocytosis of ATP in amyloid pathology and Alzheimer's disease
淀粉样蛋白病理学和阿尔茨海默病中 ATP 的星形细胞胞吐作用
  • 批准号:
    10722422
  • 财政年份:
    2023
  • 资助金额:
    $ 40.73万
  • 项目类别:
Cerebrovascular mitochondria as mediators of neuroinflammation in Alzheimer's Disease
脑血管线粒体作为阿尔茨海默病神经炎症的介质
  • 批准号:
    10723580
  • 财政年份:
    2023
  • 资助金额:
    $ 40.73万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了