Digital holographic microscopy for tracking micro-organisms in 3D
用于 3D 追踪微生物的数字全息显微镜
基本信息
- 批准号:BB/J020885/1
- 负责人:
- 金额:$ 15.22万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The majority of single-celled organisms actively navigate their environment. Many species of bacteria, for instance, use a tiny rotary motor to drive a helical filament to generate propulsion. In the case of bacteria, active navigation is required to source nutrients and to avoid toxins, to form symbiotic relationships with each other, and to move towards sites for pathogenic invasion. Currently, the only method we have of studying bacterial swimming is to look at 2D images from a conventional microscope and to infer the 3D nature of the swimming as the bacteria swim in and out of the microscope focus. A full 3D understanding of bacterial swimming is vital to probe many of the unanswered questions about how they move.The aim of this project is to develop a new microscopy technique that is capable of recording the 3D positions of swimming bacteria at high speed. This will be achieved through developing a technique known as digital holographic microscopy. A hologram is an interference pattern between light emanating from a sample and a known reference beam. The fact that we know what this 'reference beam' is a priori means we can process the interference pattern in a computer to generate three-dimensional information about the sample we have imaged. A digital holographic microscope uses a microscope objective to greatly magnify the sample before forming the hologram. In this way we can obtain the 3D positions of organisms as small as bacteria, which are 1-2 microns long.Two recent technological developments allow us to study these microorganisms in 3D, and at high speeds. The first is the advance in digital camera technology. New camera chips now have sufficient pixel resolution to capture the fine detail of these magnified holograms at very fast frame-rates (up to 2,000 frames per second). The second is the availability of graphical processing units (GPUs) for image processing. GPUs were originally invented for the computer gaming industry, but have now found a place in digital processing applications as they are far more efficient at processing large volumes of data than conventional CPUs. Our 3D holographic microscope will necessarily generate huge amounts of data (1GB per frame for a typical 3D hologram); hence, GPUs are integral to the handling of that information. One of the largest stumbling blocks that explains why digital holographic imaging has not yet been used in this manner is the lack of available GPU-compatible software to effectively process these volumes of data.Our proposed technology will bring together microscopy, high-speed, high-resolution digital cameras and the processing power of GPUs to enable the three-dimensional study of bacteria and other microorganisms. It will involve a specific form of holography called 'off-axis holography'. This technique is more difficult to implement optically at higher magnifications, yet it offers improved resolution over 'inline holography' - the other main branch of the technology. Having developed 3D microscopic imaging, we propose two methods in which it will be used to study how bacteria swim. The first uses a relatively low magnification microscope (40x) to capture holograms of many bacteria swimming in one field of view. We will use computer software to track the motion of these bacteria in 3D. In this way, we can investigate the collective swimming behaviour of a population of organisms. The second method uses higher magnification (225x) optics to investigate how individual bacteria interact with their fluid environment. This example would capture the motion of tiny 'tracer' particles that allow us to visualize the fluid flow caused by a single bacterium swimming past. We anticipate that this technology would have a wider appeal to many branches of science interested in how microorganisms and other cells - such as sperm - move.
大多数单细胞生物主动地在它们的环境中导航。例如,许多种类的细菌使用一个微小的旋转马达来驱动螺旋丝来产生推进力。以细菌为例,需要主动导航来获取营养物质并避免毒素,形成彼此的共生关系,并向病原体入侵的地点移动。目前,我们研究细菌游动的唯一方法是从传统显微镜中观察2D图像,并在细菌游进游出显微镜焦点时推断出游动的3D性质。对细菌游动的完整三维理解对于探索它们如何运动的许多未解之谜至关重要。该项目的目的是开发一种新的显微镜技术,能够高速记录游泳细菌的3D位置。这将通过开发一种称为数字全息显微镜的技术来实现。全息图是从样品发出的光和已知参考光束之间的干涉图样。事实上,我们知道这个“参考光束”是先验的,这意味着我们可以在计算机中处理干涉图案,以生成关于我们成像的样本的三维信息。数字全息显微镜在形成全息图之前,使用显微镜物镜将样品大大放大。通过这种方式,我们可以获得像细菌这样小的生物的三维位置,它们的长度为1-2微米。最近的两项技术发展使我们能够在3D和高速下研究这些微生物。首先是数码相机技术的进步。新的相机芯片现在有足够的像素分辨率,可以以非常快的帧率(高达每秒2000帧)捕捉这些放大全息图的细节。其次是图形处理单元(gpu)的可用性。gpu最初是为电脑游戏行业发明的,但现在已经在数字处理应用中找到了一席之地,因为它们在处理大量数据时比传统的cpu更有效。我们的3D全息显微镜必然会产生大量的数据(典型的3D全息图每帧1GB);因此,gpu对于处理这些信息是不可或缺的。解释数字全息成像尚未以这种方式使用的最大障碍之一是缺乏可用的gpu兼容软件来有效地处理这些数据量。我们提出的技术将把显微镜、高速、高分辨率的数码相机和gpu的处理能力结合起来,使细菌和其他微生物的三维研究成为可能。它将涉及一种特殊形式的全息术,称为“离轴全息术”。这种技术在更高的放大倍率下更难实现,但它提供了比“内嵌全息术”更高的分辨率,这是该技术的另一个主要分支。在开发了三维显微成像技术之后,我们提出了两种方法来研究细菌是如何游动的。第一种方法是使用相对较低的放大率显微镜(40倍)来捕捉在一个视野中游动的许多细菌的全息图。我们将使用计算机软件以3D的形式跟踪这些细菌的运动。通过这种方式,我们可以研究一群生物的集体游泳行为。第二种方法使用更高的放大倍率(225倍)光学来研究单个细菌如何与流体环境相互作用。这个例子将捕捉到微小的“示踪”粒子的运动,使我们能够可视化单个细菌游过时引起的流体流动。我们预计这项技术将对许多对微生物和其他细胞(如精子)如何运动感兴趣的科学分支产生更广泛的吸引力。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Digital holographic microscopy for three-dimensional studies of bacteria
用于细菌三维研究的数字全息显微镜
- DOI:
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Flewellen James Lewis
- 通讯作者:Flewellen James Lewis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Berry其他文献
Will the iPod Kill the Radio Star? Profiling Podcasting as Radio
iPod 会杀死广播明星吗?
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Richard Berry - 通讯作者:
Richard Berry
Legislation & Litigation
- DOI:
10.14219/jada.archive.1988.0336 - 发表时间:
1988-02-01 - 期刊:
- 影响因子:
- 作者:
Richard Berry - 通讯作者:
Richard Berry
The cultural importance and international recognition of the Arctic charr Salvelinus alpinus populations of Windermere, UK
- DOI:
10.1007/s10750-018-3814-6 - 发表时间:
2018-11-14 - 期刊:
- 影响因子:2.500
- 作者:
Ian J. Winfield;Richard Berry;Henry Iddon - 通讯作者:
Henry Iddon
Radiotherapy to regional nodes in early breast cancer: an individual patient data meta-analysis of 14 324 women in 16 trials
早期乳腺癌局部淋巴结放疗:对 16 项试验中 14 324 名女性进行的个体患者数据荟萃分析
- DOI:
10.1016/s0140-6736(23)01082-6 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Carolyn W. Taylor;David Dodwell;P. Mcgale;R. Hills;Richard Berry;R. Bradley;J. Braybrooke;Mike Clarke;Richard Gray;Francesca Holt;Zulian Liu;H. Pan;R. Peto;E. Straiton;Charlotte E. Coles;F. Duane;Christophe Hennequin;Glenn Jones;Thorsten Kühn;S. Oliveros;Jens Overgaard;Kathy I Pritchard;Chang;Graham Beake;Clare Boddington;C. Davies;Lucy Davies;V. Evans;Jo Gay;Lucy Gettins;Jon Godwin;S. James;Amanda J Kerr;Hui Liu;E. Mackinnon;G. Mannu;T. McHugh;P. Morris;Mariko Nakahara;Simon Read;Hannah Taylor;John Ferguson;Hans Scheurlen;S. Zurrida;V. Galimberti;James N. Ingle;P. Valagussa;U. Veronesi;S. Anderson;G. Tang;B. Fisher;Sophie Fossa;K. Reinertsen;Herman Høst;HymanB. Muss;Kaija Holli;K. Albain;R. Arriagada;John D. Bartlett;E. Bergsten;J. Bliss;E. Brain;L. Carey;Robert Coleman;Jack Cuzick;Nancy E Davidson;L. Mastro;A. D. Leo;J. Dignam;Mitch Dowsett;B. Ejlertsen;Prue Francis;J. García;R. Gelber;M. Gnant;Matthew P. Goetz;Pam Goodwin;Patricia Halpin;Dan Hayes;Catherine Hill;R. Jagsi;Wolfgang Janni;S. Loibl;E. Mamounas;Miguel Martín;Stuart McIntosh;Hirofumi Mukai;V. Nekljudova;Larry Norton;Yasuo Ohashi;M. Piccart;Lori J. Pierce;Vinod Raina;Daniel Rea;M.M. Regan;J. Robertson;Emiel J T Rutgers;R. Salgado;D. Slamon;T. Španić;J. Sparano;G. Steger;M. Toi;A. Tutt;G. Viale;Xiang Wang;N. Wilcken;N. Wolmark;Ke;David Cameron;J. Bergh;Sandra M. Swain;Tim Whelan;P. Poortmans - 通讯作者:
P. Poortmans
Richard Berry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Berry', 18)}}的其他基金
Structure, mechanism and assembly of a nano-scale biological rotary electric motor
纳米级生物旋转电机的结构、机理及组装
- 批准号:
EP/S036660/1 - 财政年份:2020
- 资助金额:
$ 15.22万 - 项目类别:
Fellowship
A simple low-cost device enables four advanced techniques on standard light microscopes
简单的低成本设备可在标准光学显微镜上实现四种先进技术
- 批准号:
BB/P023983/1 - 财政年份:2017
- 资助金额:
$ 15.22万 - 项目类别:
Research Grant
Single-molecule fluorescence microscopy of intracellular protein dynamics in live bacteria without fluorescent proteins
无荧光蛋白的活细菌细胞内蛋白质动力学的单分子荧光显微镜
- 批准号:
BB/N006070/1 - 财政年份:2016
- 资助金额:
$ 15.22万 - 项目类别:
Research Grant
Digital Holographic Microscopy for Microorganism Analysis and Diagnostic Testing
用于微生物分析和诊断测试的数字全息显微镜
- 批准号:
BB/N022580/1 - 财政年份:2016
- 资助金额:
$ 15.22万 - 项目类别:
Research Grant
Language Based Area Studies, Centre for Russian, Central and East European Studies
语言领域研究,俄罗斯、中欧和东欧研究中心
- 批准号:
AH/L00674X/1 - 财政年份:2014
- 资助金额:
$ 15.22万 - 项目类别:
Research Grant
Powering the cell: high resolution single-molecule investigation the mechanism of ATP synthesis
为细胞提供动力:高分辨率单分子研究 ATP 合成机制
- 批准号:
BB/L01985X/1 - 财政年份:2014
- 资助金额:
$ 15.22万 - 项目类别:
Research Grant
LBAS: Centre for Russian, Central and East European Studies.
LBAS:俄罗斯、中欧和东欧研究中心。
- 批准号:
AH/K000063/1 - 财政年份:2012
- 资助金额:
$ 15.22万 - 项目类别:
Research Grant
Torque generation in the bacterial flagellar motor
细菌鞭毛马达中的扭矩产生
- 批准号:
BB/H01991X/1 - 财政年份:2010
- 资助金额:
$ 15.22万 - 项目类别:
Research Grant
相似国自然基金
超弦/M-理论、粒子物理相关问题的研究
- 批准号:11105138
- 批准年份:2011
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
光折变晶体存储器的双色多重存储技术研究
- 批准号:60377003
- 批准年份:2003
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase I: Automated Gram Stain Interpretation Via Digital Holographic Microscopy
SBIR 第一阶段:通过数字全息显微镜进行自动革兰氏染色解读
- 批准号:
2321453 - 财政年份:2023
- 资助金额:
$ 15.22万 - 项目类别:
Standard Grant
Unveiling comprehensive cellular biophysical properties using quantitative phase digital holographic microscopy
使用定量相位数字全息显微镜揭示全面的细胞生物物理特性
- 批准号:
RGPIN-2018-06198 - 财政年份:2022
- 资助金额:
$ 15.22万 - 项目类别:
Discovery Grants Program - Individual
Unveiling comprehensive cellular biophysical properties using quantitative phase digital holographic microscopy
使用定量相位数字全息显微镜揭示全面的细胞生物物理特性
- 批准号:
RGPIN-2018-06198 - 财政年份:2021
- 资助金额:
$ 15.22万 - 项目类别:
Discovery Grants Program - Individual
Unveiling comprehensive cellular biophysical properties using quantitative phase digital holographic microscopy
使用定量相位数字全息显微镜揭示全面的细胞生物物理特性
- 批准号:
RGPIN-2018-06198 - 财政年份:2020
- 资助金额:
$ 15.22万 - 项目类别:
Discovery Grants Program - Individual
Unveiling comprehensive cellular biophysical properties using quantitative phase digital holographic microscopy
使用定量相位数字全息显微镜揭示全面的细胞生物物理特性
- 批准号:
RGPIN-2018-06198 - 财政年份:2019
- 资助金额:
$ 15.22万 - 项目类别:
Discovery Grants Program - Individual
Lens-less digital holographic super-resolution microscopy with mapping from image plane to observation plane
无透镜数字全息超分辨率显微镜,具有从图像平面到观察平面的映射
- 批准号:
18K04968 - 财政年份:2018
- 资助金额:
$ 15.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
In-line digital holographic microscopy for automated QC and process control in cell therapy manufacturing
用于细胞治疗制造中自动化质量控制和过程控制的在线数字全息显微镜
- 批准号:
133424 - 财政年份:2018
- 资助金额:
$ 15.22万 - 项目类别:
Feasibility Studies
Unveiling comprehensive cellular biophysical properties using quantitative phase digital holographic microscopy
使用定量相位数字全息显微镜揭示全面的细胞生物物理特性
- 批准号:
RGPIN-2018-06198 - 财政年份:2018
- 资助金额:
$ 15.22万 - 项目类别:
Discovery Grants Program - Individual
Implementation of Digital Holographic Microscopy for Biofilm Characterization
实施数字全息显微镜进行生物膜表征
- 批准号:
497079-2016 - 财政年份:2016
- 资助金额:
$ 15.22万 - 项目类别:
University Undergraduate Student Research Awards
Digital Holographic Microscopy for Morphology-based Enrichment of Circulating Tumour Cells
基于形态学富集循环肿瘤细胞的数字全息显微镜
- 批准号:
132211 - 财政年份:2016
- 资助金额:
$ 15.22万 - 项目类别:
Feasibility Studies














{{item.name}}会员




