US-UK Collab Linking models and policy: Using active adaptive management for optimal control of disease outbreaks.

美英合作链接模型和政策:使用主动适应性管理来最佳控制疾病爆发。

基本信息

  • 批准号:
    BB/K010972/2
  • 负责人:
  • 金额:
    $ 45.65万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

In the event of an outbreak of an infectious disease, management strategies to control further spread of infection are generally implemented based either upon strategies employed during previous epidemics or a pre-conceived expectation of the likelihood of success. However, at the onset of an outbreak, there is a great amount of uncertainty regarding the epidemiological properties of the disease and this may have a significant influence upon the ability of the chosen management strategy to contain or control the epidemic. Mathematical models can be developed to simulate spread of disease and evaluate the effectiveness of potential control strategies. However, the effectiveness of these models may be restricted by our limited knowledge of the epidemic as it unfolds.Extensive analyses of the 2001 Foot and Mouth (FMD) outbreak in the UK have provided valuable information about both the dynamics of disease spread and the implementation of management actions. However, those observations are specific both to the UK setting and to the strain of. A future outbreak in the UK or an outbreak in another country such as the US will not necessarily follow the same pattern. Thus, key aspects of disease spread, and the optimal response, cannot be resolved until an outbreak occurs. Adaptive management (AM) seeks to address this limitation by incorporating monitoring, evaluation, and response into management actions such that management strategies can be modified and updated in response to improved understanding of the outbreak dynamics. The AM framework has previously been applied in conservation management but is yet to be applied to the management of infectious diseases.AM provides a framework for switching from the early strategy that optimises the average outcome (when uncertainties are yet to be resolved), to the one that optimises the outcome for the specific model (or models) that best matches by the outbreak at hand. Additionally, active adaptive management seeks to make this switch as soon as possible, by initially using sub-optimal controls that allow the specific model to be identified as soon as possible. Thus, early management actions can be used to improve knowledge of the dynamics and more rapidly transition to the strategy that maximizes the global objective.Although we are interested in the general application of AM to a range of outbreak scenarios; in this project we will use the 2001 FMD epidemic as a detailed, well-defined example. Despite a decade of modelling efforts, key uncertainties concerning optimal control remain, AM will allow us to address these issues. In particular we propose to: 1. Use the observed surveillance from the 2001 outbreak to identify the optimal adaptive strategy and the economic benefit of that strategy relative to a static (fixed) strategy.2. Simulate the use of active AM to discriminate amongst competing models and selection of the optimal strategy. To that end we will consider the application of management strategies to facilitate learning and rapid updating of control policies.3. Use AM to determine optimal management strategies for other disease scenarios, helping to generate a more generic understanding.4. Using the FMD case-study developed in 1 and 2, we will support workshops that engage members of the US and UK policy community in the use of adaptive management for an outbreak. 5. Based on the understanding gained in the workshops, we will develop a US-based outbreak case-study that will be used as the subject of training workshops in the second half of the grant period. This case study would demonstrate the utility of AM in a scenario of extreme uncertainty.The outputs of this project would elucidate the ability of AM to provide efficient policy advice in the event of future unknown outbreaks of infectious disease. A single, flexible policy that is able to adapt to the observed outbreak would have massive implications in reducing the impact of future outbreaks.
在传染病爆发的情况下,控制感染进一步传播的管理策略通常是根据以前流行病期间采用的策略或预先设想的成功可能性来实施的。然而,在疾病暴发初期,关于疾病的流行病学特性存在很大的不确定性,这可能对所选择的管理战略遏制或控制流行病的能力产生重大影响。可以建立数学模型来模拟疾病的传播,并评估潜在控制策略的有效性。然而,这些模型的有效性可能会受到限制,我们有限的知识的流行病,因为它unfolds.Extensive分析2001年口蹄疫(FMD)爆发在英国提供了宝贵的信息,疾病传播的动力学和管理行动的实施。然而,这些观察结果既针对英国环境,也针对菌株。未来在英国爆发或在美国等其他国家爆发的疫情不一定会遵循相同的模式。因此,疾病传播的关键方面和最佳应对措施在爆发之前无法解决。适应性管理(AM)试图通过将监测,评估和应对纳入管理行动来解决这一限制,以便根据对疫情动态的更好理解来修改和更新管理策略。AM框架以前曾应用于保护管理,但尚未应用于传染病的管理。AM提供了一个框架,用于从优化平均结果的早期策略(当不确定性尚未解决时)切换到优化特定模型(或模型)的结果,最佳匹配的爆发。此外,主动自适应管理寻求尽快进行这种转换,通过最初使用次优控制,允许尽快识别特定模型。因此,早期的管理措施可以用来提高知识的动态和更迅速地过渡到战略,最大限度地提高全球objective.Although我们感兴趣的是在一般应用AM的范围内爆发的情况下,在这个项目中,我们将使用2001年的口蹄疫疫情作为一个详细的,定义明确的例子。尽管经过十年的建模努力,关于最优控制的关键不确定性仍然存在,AM将使我们能够解决这些问题。我们特别建议:1.使用2001年暴发的观察监测来确定最佳适应策略以及该策略相对于静态(固定)策略的经济效益。模拟使用主动AM来区分竞争模型并选择最佳策略。为此,我们将考虑应用管理战略,以促进学习和快速更新控制政策。使用AM来确定其他疾病场景的最佳管理策略,有助于产生更一般的理解。4.利用1和2中开发的口蹄疫案例研究,我们将支持研讨会,让美国和英国政策界的成员参与对疫情的适应性管理。5.根据在工作坊中获得的理解,我们将开发一个以美国为基地的爆发个案研究,作为资助期后半期培训工作坊的主题。这个案例研究将展示AM在极端不确定性情景中的实用性。这个项目的产出将阐明AM在未来未知的传染病爆发事件中提供有效政策建议的能力。一项能够适应所观察到的疫情的单一、灵活的政策将对减少未来疫情的影响产生巨大影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Tildesley其他文献

Parameterisation of a bluetongue virus mathematical model using a systematic literature review
使用系统文献综述的蓝图病毒数学模型的参数化
  • DOI:
    10.1016/j.prevetmed.2024.106328
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Joanna de Klerk;Michael Tildesley;Adam Robbins;Erin Gorsich
  • 通讯作者:
    Erin Gorsich

Michael Tildesley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Tildesley', 18)}}的其他基金

21-EEID US-UK Collab: Long-Distance Dispersal and Disease Spread Under Increased Ecological Complexity
21-EEID 美英合作:生态复杂性增加下的长距离传播和疾病传播
  • 批准号:
    BB/X005224/1
  • 财政年份:
    2023
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Research Grant
Exploring Risk Factors for Sequential and Concurrent Dengue and Zika Outbreaks in a Naïve Population
探索未接触过登革热和寨卡病毒的人群中连续和同时爆发的风险因素
  • 批准号:
    NE/T014687/1
  • 财政年份:
    2020
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Research Grant
Mathematical modeling and adaptive control to inform real time decision making for the COVID-19 pandemic at the local, regional and national scale
数学建模和自适应控制为地方、区域和国家范围内的 COVID-19 大流行的实时决策提供信息
  • 批准号:
    MR/V009761/1
  • 财政年份:
    2020
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Research Grant
US-UK Collab: Adaptive surveillance and control for the elimination of endemic disease
美英合作:消除地方病的适应性监测和控制
  • 批准号:
    BB/T004312/1
  • 财政年份:
    2019
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Research Grant
Investigating the impact of farmer behaviour and farmer-led control of infectious disease outbreaks in livestock
调查农民行为和农民主导的牲畜传染病爆发控制的影响
  • 批准号:
    BB/S01750X/1
  • 财政年份:
    2019
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Research Grant
US-UK Collab Linking models and policy: Using active adaptive management for optimal control of disease outbreaks.
美英合作链接模型和政策:使用主动适应性管理来最佳控制疾病爆发。
  • 批准号:
    BB/K010972/4
  • 财政年份:
    2016
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Research Grant
US-UK Collab Linking models and policy: Using active adaptive management for optimal control of disease outbreaks.
美英合作链接模型和政策:使用主动适应性管理来最佳控制疾病爆发。
  • 批准号:
    BB/K010972/3
  • 财政年份:
    2014
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Research Grant
US-UK Collab Linking models and policy: Using active adaptive management for optimal control of disease outbreaks.
美英合作链接模型和政策:使用主动适应性管理来最佳控制疾病爆发。
  • 批准号:
    BB/K010972/1
  • 财政年份:
    2013
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Research Grant

相似国自然基金

LncRNA-lincUK介导邻近基因UK组蛋白修 饰调控褐飞虱繁殖力的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
CREKA/rhPro-UK靶向载药微泡在腔内超声场下对静脉血栓的除栓作用及机理研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
EEID:US-UK-China: 新发禽流感病毒的演进与生态传播动力学的前瞻性研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    450 万元
  • 项目类别:
抗真菌药物UK-2A的组合生物合成研究
  • 批准号:
    31970054
  • 批准年份:
    2019
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
超低温(uK-mK)离子+原子+原子三体复合的全维量子力学理论研究
  • 批准号:
    21873016
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
两种温度指标(Uk'37和TEX86) 的现代水体调查和沉积记录整合研究
  • 批准号:
    41376046
  • 批准年份:
    2013
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
新型多肽UK12抑制视网膜新生血管作用及机制研究
  • 批准号:
    81302683
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
UK37和藻类分子标志物——研究白令海、北冰洋浮游植物群落结构变化对北极气候变暖和ENSO的响应和反馈
  • 批准号:
    41276199
  • 批准年份:
    2012
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
牛UK株轮状病毒拮抗Ⅰ型IFN信号转导通路机制的研究
  • 批准号:
    31201909
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
UK37和分子化石及其单体δ13C、δD特殊形式记录——浙江沿海浮游植物对Ei Nino / La Nina 响应及其可能机理
  • 批准号:
    40876063
  • 批准年份:
    2008
  • 资助金额:
    47.0 万元
  • 项目类别:
    面上项目

相似海外基金

21-EEID US-UK Collab: Multi-scale infection dynamics from cells to landscapes: foot-and-mouth disease viruses in African buffalo
21-EEID 美英合作:从细胞到景观的多尺度感染动态:非洲水牛的口蹄疫病毒
  • 批准号:
    BB/X006085/1
  • 财政年份:
    2023
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Research Grant
US-UK Collab: Integrating metaviromics with epidemiological dynamics: understanding virus transmission in the Anthropocene
美英合作:将元病毒组学与流行病学动态相结合:了解人类世的病毒传播
  • 批准号:
    2308273
  • 财政年份:
    2023
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Continuing Grant
21-EEID US-UK Collab: Long-Distance Dispersal and Disease Spread Under Increased Ecological Complexity
21-EEID 美英合作:生态复杂性增加下的长距离传播和疾病传播
  • 批准号:
    BB/X005224/1
  • 财政年份:
    2023
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Research Grant
US-UK Collab: Resurrecting a role for roguing: Presymptomatic detection with multispectral imaging to quantify and control the transmission of cassava brown streak disease
美英合作:恢复欺诈行为:利用多光谱成像进行症状前检测,以量化和控制木薯褐条病的传播
  • 批准号:
    2308503
  • 财政年份:
    2023
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Standard Grant
19-EEID US-UK Collab: Disentangling transport and trophic effects of animal movement on infectious disease
19-EEID 美英合作:解开动物运动对传染病的运输和营养影响
  • 批准号:
    BB/V004484/1
  • 财政年份:
    2021
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Research Grant
US-UK Collab: Modelling reassortment at the cellular, clinical, and phylogenetic level in emerging Bunyaviruses
美英合作:在新兴布尼亚病毒的细胞、临床和系统发育水平上模拟重配
  • 批准号:
    10653884
  • 财政年份:
    2021
  • 资助金额:
    $ 45.65万
  • 项目类别:
US-UK Collab: Modelling reassortment at the cellular, clinical, and phylogenetic level in emerging Bunyaviruses
美英合作:在新兴布尼亚病毒的细胞、临床和系统发育水平上模拟重配
  • 批准号:
    10442649
  • 财政年份:
    2021
  • 资助金额:
    $ 45.65万
  • 项目类别:
US-UK Collab: The consequences of transmissible vaccines on disease ecology and pathogen evolution: Marek's disease virus as a case study
美英合作:传染性疫苗对疾病生态学和病原体进化的影响:以马立克氏病病毒为例
  • 批准号:
    BB/V017748/1
  • 财政年份:
    2021
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Research Grant
YY-EEID US-UK Collab: Combined influence of imperfect vaccines, host genetics, and non-genetic drivers on virus transmission and virulence evolution
YY-EEID 美英合作:不完善的疫苗、宿主遗传学和非遗传驱动因素对病毒传播和毒力进化的综合影响
  • 批准号:
    BB/V017411/1
  • 财政年份:
    2021
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Research Grant
US-UK Collab: Modelling reassortment at the cellular, clinical, and phylogenetic level in emerging Bunyaviruses
美英合作:在新兴布尼亚病毒的细胞、临床和系统发育水平上模拟重配
  • 批准号:
    10379508
  • 财政年份:
    2021
  • 资助金额:
    $ 45.65万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了