Development and validation of new reagents and assays to exploit the final steps of peptidoglycan construction

开发和验证新试剂和检测方法,以利用肽聚糖构建的最后步骤

基本信息

  • 批准号:
    BB/K017268/1
  • 负责人:
  • 金额:
    $ 40.48万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Millions of people die each year from bacterial infections and tens of millions suffer from the consequences of these infections. The discovery of the antibiotic penicillin once opened the door to treat these infections. It did this by stopping bacteria from making the polymer in the cell wall that holds them together. This polymer, called peptidoglycan (PG), is made up of an interlocking network of sugars and strings of amino acids (peptides). Specialised proteins (called penicillin-binding-proteins or PBPs, which are present in all bacteria) either have the ability to stitch together the sugar backbone and peptides. The construction of peptide cross-links by PBPs is famously the target inhibited by penicillin which stops cell wall construction and kills the bacterium. Penicillin has been an excellent antibiotic, not least because it targets multiple PBPs simultaneously within a bacterium. Unfortunately, many bacteria are no longer killed by penicillin and other antibiotics that attack the production of peptidoglycan. Bacteria have changed by evading the action of these antibiotics by modifying the target PBPs and producing enzymes that degrade the antibiotic. We need to fight back and the strategy of exploring PBPs for new inhibitors is widely recognised as an important well validated option. Progress in achieving this has been hampered by our inability to routinely synthesise the key chemical components that make this polymer. We can now do this at Warwick, and have an exceptional track record of providing reagents to study peptidoglycan biosynthesis to academia worldwide. Having studied how the precursors of these reagents are produced by enzymes in the PG pathway, we intend to exploit the opportunities we have discovered to develop completely new reagents with bespoke components. This is exciting for both the academic and industrial communities as we will become able to produce tailor-made intermediates for specific functions. For example, we can include radioactive sugars or amino acids, fluorescent labels, or modifying sugars or amino acids in ways which alter their ability to polymerise. These reagents will enable us, and the wider community, to explore fundamentally important unanswered questions about these targets andhow bacteria grow and control the production of peptidoglycan. We will be in a position to use these reagents to develop ambitious new assays, not only to characterise the activities of these targets, but also to explore the translation of these assays into formats for industry to use them in the search for completely new classes of inhibitors, overcoming current problems of resistance to penicillin and related antibiotics. To achieve this we will use our academic expertise gathered over the past decade of funding with enzymologists, chemists, engineers, mathematicians and physicists, and use this in a new closer partnership with industry. This partnership will provide open access for us to develop the work more widely, to increase the platform of reagents we can produce, extend our capability into new assays to study the complex, difficult, final stages of peptidoglycan construction. All of this will work towards fundamentally new biological insights. It will also underpin opportunities to further develop these reagents and assays for use by industry. To do this we will have to refine current methods to scale up production and develop robust industry quality assays. Our partnership consists of scientists and technical support at Warwick University with complementary skills and specialist knowledge to acomplish these tasks, along with Astra Zeneca, who are committed to supporting open access to this new underpinning technology and helping to develop novel approaches to high throughput screens. This heralds an era where academics and industry can work closely together in the search for new antibiotics.
每年有数百万人死于细菌感染,数千万人遭受这些感染的后果。抗生素青霉素的发现一度为治疗这些感染打开了大门。它通过阻止细菌在细胞壁中制造将它们结合在一起的聚合物来做到这一点。这种聚合物被称为肽聚糖(PG),由糖和氨基酸链(肽)组成的连锁网络组成。专门的蛋白质(被称为青霉素结合蛋白或PBPs,存在于所有细菌中)要么有能力将糖骨架和肽连接在一起。众所周知,PBPs构建肽交联是青霉素抑制的靶标,青霉素可以阻止细胞壁的构建并杀死细菌。青霉素一直是一种很好的抗生素,尤其是因为它同时针对细菌内的多个pbp。不幸的是,许多细菌不再被青霉素和其他攻击肽聚糖生产的抗生素杀死。细菌通过改变目标PBPs和产生降解抗生素的酶来逃避这些抗生素的作用。我们需要反击,探索PBPs作为新抑制剂的策略被广泛认为是一个重要的经过验证的选择。我们无法常规地合成制造这种聚合物的关键化学成分,阻碍了实现这一目标的进展。我们现在可以在华威大学做到这一点,并且在向全世界学术界提供研究肽聚糖生物合成的试剂方面有着出色的记录。在研究了这些试剂的前体是如何由PG途径中的酶产生的之后,我们打算利用我们发现的机会开发具有定制成分的全新试剂。这对于学术界和工业界来说都是令人兴奋的,因为我们将能够为特定功能生产量身定制的中间体。例如,我们可以包括放射性糖或氨基酸,荧光标记,或以改变其聚合能力的方式修饰糖或氨基酸。这些试剂将使我们和更广泛的社区能够探索关于这些靶点以及细菌如何生长和控制肽聚糖生产的根本重要未解问题。我们将能够利用这些试剂开发雄心勃勃的新检测方法,不仅可以表征这些靶标的活性,还可以探索将这些检测方法转化为行业格式,以便在寻找全新类型的抑制剂时使用它们,克服当前对青霉素和相关抗生素的耐药性问题。为了实现这一目标,我们将利用我们在过去十年中与酶学家、化学家、工程师、数学家和物理学家合作的学术专长,并将其用于与工业界建立新的更紧密的合作关系。这一合作伙伴关系将为我们提供更广泛地开展工作的开放途径,增加我们可以生产的试剂平台,将我们的能力扩展到新的检测中,以研究复杂、困难的肽聚糖构建的最后阶段。所有这些都将有助于从根本上获得新的生物学见解。它还将为进一步开发这些试剂和分析方法以供工业使用提供机会。要做到这一点,我们必须改进现有的方法,以扩大生产规模,并开发强大的行业质量分析。我们的合作伙伴包括华威大学的科学家和技术支持人员,他们拥有互补的技能和专业知识来完成这些任务,以及Astra Zeneca,他们致力于支持对这种新的基础技术的开放获取,并帮助开发高通量筛选的新方法。这预示着一个时代的到来,学术界和工业界可以密切合作,寻找新的抗生素。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molecular coordination of Staphylococcus aureus cell division.
  • DOI:
    10.7554/elife.32057
  • 发表时间:
    2018-02-21
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Lund VA;Wacnik K;Turner RD;Cotterell BE;Walther CG;Fenn SJ;Grein F;Wollman AJ;Leake MC;Olivier N;Cadby A;Mesnage S;Jones S;Foster SJ
  • 通讯作者:
    Foster SJ
Inhibition of D-Ala:D-Ala ligase through a phosphorylated form of the antibiotic D-cycloserine.
  • DOI:
    10.1038/s41467-017-02118-7
  • 发表时间:
    2017-12-05
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Batson S;de Chiara C;Majce V;Lloyd AJ;Gobec S;Rea D;Fülöp V;Thoroughgood CW;Simmons KJ;Dowson CG;Fishwick CWG;de Carvalho LPS;Roper DI
  • 通讯作者:
    Roper DI
Adenosine tetraphosphoadenosine drives a continuous ATP-release assay for aminoacyl-tRNA synthetases and other adenylate-forming enzymes.
  • DOI:
    10.1021/cb400248f
  • 发表时间:
    2013-10
  • 期刊:
  • 影响因子:
    4
  • 作者:
    A. Lloyd;Nicola J Potter;C. Fishwick;D. Roper;C. Dowson
  • 通讯作者:
    A. Lloyd;Nicola J Potter;C. Fishwick;D. Roper;C. Dowson
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Dowson其他文献

EFFICACY OF REPEATED INJECTIONS OF BOTULINUM TOXIN-A IN PATIENTS WITH OVERACTIVE BLADDER AND IDIOPATHIC DETRUSOR OVERACTIVITY
  • DOI:
    10.1016/s0022-5347(08)61293-8
  • 发表时间:
    2008-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Christopher Dowson;Arun Sahai;Jacques Roux;Jane Watkins;Mohammad S Khan;Prokar Dasgupta
  • 通讯作者:
    Prokar Dasgupta
CODIFI (Concordance in Diabetic Foot Infection): Agreement in reported presence of likely pathogens in swabs and tissue samples from infected diabetic foot ulcers
  • DOI:
    10.1186/1757-1146-8-s1-a2
  • 发表时间:
    2015-04-20
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Michael Backhouse;Andrea Nelson;Alexandra Wright-Hughes;Moninder Bhogal;Sarah Brown;Catherine Reynolds;Benjamin Lipsky;Christopher Dowson;Jane Nixon
  • 通讯作者:
    Jane Nixon
ASSESSMENT OF URODYNAMICS AND DETRUSOR CONTRACTILITY FOLLOWING BOTULINUM TOXIN-A TREATMENT FOR OVERACTIVE BLADDER
  • DOI:
    10.1016/s0022-5347(08)61294-x
  • 发表时间:
    2008-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Arun Sahai;Phillipa Sangster;Vinay Kalsi;Christopher Dowson;Mohammad S Khan;Derek Griffiths;Clare J Fowler;Prokar Dasgupta
  • 通讯作者:
    Prokar Dasgupta
Repeat botulinum toxin-A injections for treatment of adult detrusor overactivity
重复注射肉毒杆菌毒素 A 治疗成人逼尿肌过度活动
  • DOI:
    10.1038/nrurol.2010.187
  • 发表时间:
    2010-12-08
  • 期刊:
  • 影响因子:
    14.600
  • 作者:
    Christopher Dowson;Mohammad Shamim Khan;Prokar Dasgupta;Arun Sahai
  • 通讯作者:
    Arun Sahai

Christopher Dowson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Dowson', 18)}}的其他基金

Antimicrobial Resistance: Breakthrough Compound Discovery through Mechanistic Studies combined with Bicycle Technology and Target Validation
抗菌素耐药性:通过机理研究结合自行车技术和目标验证实现突破性化合物发现
  • 批准号:
    BB/Y003306/1
  • 财政年份:
    2023
  • 资助金额:
    $ 40.48万
  • 项目类别:
    Research Grant
Developing mechanistic understanding to improve the activity of bicyclic peptides as novel antimicrobials
发展机制理解以提高双环肽作为新型抗菌剂的活性
  • 批准号:
    MR/W003554/1
  • 财政年份:
    2021
  • 资助金额:
    $ 40.48万
  • 项目类别:
    Research Grant
CHNUK: Integrated platforms from science to policy in response to antibacterial resistance
CHNUK:从科学到政策的综合平台应对抗菌药物耐药性
  • 批准号:
    MR/S014934/1
  • 财政年份:
    2019
  • 资助金额:
    $ 40.48万
  • 项目类别:
    Research Grant
Accelerate CHNUK AMR discovery: Establishing joint China/UK training and research platforms enabling highthroughput fragment based inhibitor discovery
加速 CHNUK AMR 发现:建立中英联合培训和研究平台,实现基于高通量片段的抑制剂发现
  • 批准号:
    MR/P007503/1
  • 财政年份:
    2016
  • 资助金额:
    $ 40.48万
  • 项目类别:
    Research Grant
MICA: Mechanistic understanding of cell wall biosynthesis to combat antimicrobial resistance
MICA:了解细胞壁生物合成对抗抗菌素耐药性的机制
  • 批准号:
    MR/N002679/1
  • 财政年份:
    2015
  • 资助金额:
    $ 40.48万
  • 项目类别:
    Research Grant
International exploitation of new reagents and assays for antibiotic discovery
国际上开发抗生素新试剂和检测方法
  • 批准号:
    BB/N00390X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 40.48万
  • 项目类别:
    Research Grant
Enabling exploitation of novel reagents and assays (EnRgy) to target the inhibition of peptidoglycan biosynthesis
能够利用新型试剂和测定法(EnRgy)来靶向抑制肽聚糖生物合成
  • 批准号:
    BB/M005011/1
  • 财政年份:
    2014
  • 资助金额:
    $ 40.48万
  • 项目类别:
    Research Grant
Team CanUK: Novel antibacterial targets, assays, probes and opportunities in bacterial cell wall biogenesis
CanUK 团队:细菌细胞壁生物发生中的新型抗菌靶点、检测方法、探针和机遇
  • 批准号:
    G1100127/1
  • 财政年份:
    2012
  • 资助金额:
    $ 40.48万
  • 项目类别:
    Research Grant

相似海外基金

Bioorthogonal probe development for highly parallel in vivo imaging
用于高度并行体内成像的生物正交探针开发
  • 批准号:
    10596786
  • 财政年份:
    2023
  • 资助金额:
    $ 40.48万
  • 项目类别:
Resource Development Core
资源开发核心
  • 批准号:
    10746903
  • 财政年份:
    2023
  • 资助金额:
    $ 40.48万
  • 项目类别:
Development of Utrophin Site Blocking Oligos (SBOs) to Treat Duchenne Muscular Dystrophy (DMD)
开发 Utropin 位点封闭寡核苷酸 (SBO) 来治疗杜氏肌营养不良症 (DMD)
  • 批准号:
    10678195
  • 财政年份:
    2023
  • 资助金额:
    $ 40.48万
  • 项目类别:
Development of a new class of BLVRB-targeted redox therapeutics in breast cancer
开发一类新型 BLVRB 靶向乳腺癌氧化还原疗法
  • 批准号:
    10759653
  • 财政年份:
    2023
  • 资助金额:
    $ 40.48万
  • 项目类别:
Development and Pre-Clinical Validation of Quantitative Imaging of Cell State Kinetics (QuICK) for Functional Precision Oncology
用于功能性精准肿瘤学的细胞状态动力学定量成像 (QuICK) 的开发和临床前验证
  • 批准号:
    10737379
  • 财政年份:
    2023
  • 资助金额:
    $ 40.48万
  • 项目类别:
Development of a sample preparation protocol for 3D kidney ultrastructural analysis and immunolabeling by light microscopy
开发用于 3D 肾脏超微结构分析和光学显微镜免疫标记的样品制备方案
  • 批准号:
    10760947
  • 财政年份:
    2023
  • 资助金额:
    $ 40.48万
  • 项目类别:
Development of Immunological Reagents for the Identification of New World Monkey Biomarkers
开发用于鉴定新世界猴生物标志物的免疫试剂
  • 批准号:
    10807651
  • 财政年份:
    2023
  • 资助金额:
    $ 40.48万
  • 项目类别:
Development of data driven and AI empowered systems biology to study human diseases
数据驱动和人工智能的发展使系统生物学能够研究人类疾病
  • 批准号:
    10714763
  • 财政年份:
    2023
  • 资助金额:
    $ 40.48万
  • 项目类别:
Development of a Novel Calcium Channel Therapeutic for Opioid Use Disorder
开发一种治疗阿片类药物使用障碍的新型钙通道疗法
  • 批准号:
    10684558
  • 财政年份:
    2023
  • 资助金额:
    $ 40.48万
  • 项目类别:
Quantitative Ultrasound for Assessment of Placental Structure During the Development of Preeclampsia
定量超声评估先兆子痫发展过程中的胎盘结构
  • 批准号:
    10790437
  • 财政年份:
    2023
  • 资助金额:
    $ 40.48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了