MICA: Mechanistic understanding of cell wall biosynthesis to combat antimicrobial resistance
MICA:了解细胞壁生物合成对抗抗菌素耐药性的机制
基本信息
- 批准号:MR/N002679/1
- 负责人:
- 金额:$ 412.42万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The discovery of the antibiotic penicillin opened the door to the treatment of a wide range of infections. It works by stopping bacteria from making the polymer in the cell wall (peptidoglycan, PG) that holds them together. This is assembled by specialised proteins (called penicillin-binding-proteins or PBPs, which are present in all bacteria) that either have the ability to stitch together both the sugar backbone and the peptides (these are known as bi-functional enzymes), or either just the sugar back bone or just the peptide-crosslinks (mono-functional enzymes). We know little about how the polymerization and cross linking activities are controlled or co-ordinated, or how they truly interact with their natural substrates. Furthermore, the construction of peptide cross-links by PBPs is famously the target inhibited by penicillin which stops cell wall construction and kills the bacterium. Penicillin has been an excellent antibiotic, not least because it targets multiple PBPs simultaneously within a bacterium and resistance rarely develops by altering the PBP target (with the notable exception of bacteria that can acquire altered PBP genes from other species that are poor targets for the antibiotic). Unfortunately, many bacteria have acquired resistance to penicillin by other mechanisms. Primarily this has been due to the acquisition of enzymes that degrade the antibiotic (beta-lactamases), or reduce penetration (influx) of antibiotic into the bacterium or increasing the rate of efflux out of the bacterium. We urgently need to fight back and the strategy of exploring PBPs to make better versions of current antibiotics that are more active, can evade beta-lactamases or resistance due to changing influx or efflux. Global pharmaceutical companies have a real interest in progressing such developments, however, they need better mechanistic insight into how PBPs work. We attend to address these fundamental gaps in our understanding. Why can we succeed where others have failed? 1. Progress in achieving this mechanistic insight has been hampered by past inability to routinely synthesise the key chemical components or precursors that make this polymer. From past MRC and BBSRC funding we can now make key chemical components at Warwick, and have developed an exceptional track record of providing reagents to study peptidoglycan biosynthesis to academia worldwide.2. Having studied how to synthesise all of the chemical precursors used by different PBPs we have developed completely new continuous assays that will now help us to understand how PBPs polymerise precursors or how they crosslink these. We have one assay to finalise, which would bring together our ability to study polymerization and crosslinking in one reaction. Alongside a continuous crosslinking assay, these new technologies represent a 70 year long breakthrough and world first. 3. Super high resolution imaging is now available so that we can see how PBPs work inside bacteria and in the test tube, how they interact with each other and other proteins or lipids within bacterial cells. We can also study PBP structure at ultra-high resolution to understand how PBPs interact at the molecular level with their natural substrates and different well known antibiotics. We also have access to new chemical approaches, which along with our assays and structural biology will help direct us to new ways to stop these enzymes.4. Finally, we have brought together international academic experts from across the UK with skills in microbiology, chemistry and physics to work in synchrony and closely with many industry experts and a wider scientific advisory panel. This concentration of effort across a wide skill base with new technology will help ensure rapid progress and results with broad application that will be valuable for future programs of antibiotic discovery and development.
抗生素青霉素的发现为治疗各种感染打开了大门。它的工作原理是阻止细菌在细胞壁中制造聚合物(肽聚糖,PG),将它们结合在一起。这是由专门的蛋白质(称为青霉素结合蛋白或PBP,存在于所有细菌中)组装的,这些蛋白质要么能够将糖骨架和肽(这些被称为双功能酶)缝合在一起,要么只有糖骨架或只有肽交联(单功能酶)。我们对聚合和交联活动是如何控制或协调的,或者它们是如何与天然底物相互作用的知之甚少。此外,通过PBPs构建肽交联是青霉素抑制的目标,青霉素阻止细胞壁构建并杀死细菌。青霉素一直是一种出色的抗生素,尤其是因为它同时靶向细菌内的多个PBP,并且很少通过改变PBP靶点而产生耐药性(值得注意的例外是,细菌可以从其他物种获得改变的PBP基因,而这些物种是抗生素的不良靶点))。不幸的是,许多细菌通过其他机制获得了对青霉素的耐药性。这主要是由于获得降解抗生素的酶(β-内酰胺酶),或减少抗生素进入细菌的渗透(流入)或增加细菌外排的速率。我们迫切需要反击和探索PBPs的策略,以使当前抗生素的更好版本更有活性,可以逃避β-内酰胺酶或由于改变流入或流出而产生的耐药性。全球制药公司对推进此类开发有真实的兴趣,然而,他们需要更好地了解PBPs如何工作。我们致力于解决我们理解中的这些根本差距。为什么我们能在别人失败的地方取得成功?1.在实现这一机制的洞察力的进展一直阻碍了过去无法常规合成的关键化学成分或前体,使这种聚合物。从过去的MRC和BBSRC的资金,我们现在可以使关键的化学成分在沃里克,并已开发了一个特殊的跟踪记录提供试剂,研究肽聚糖生物合成的学术界世界各地。在研究了如何合成不同PBPs使用的所有化学前体之后,我们开发了全新的连续测定法,现在将帮助我们了解PBPs如何聚合前体或如何交联这些前体。我们有一个试验要完成,这将使我们能够在一个反应中研究聚合和交联。除了连续交联分析,这些新技术代表了70年的突破和世界第一。3.超高分辨率成像现在可以使用,这样我们就可以看到PBPs如何在细菌内部和试管中工作,它们如何与细菌细胞内的其他蛋白质或脂质相互作用。我们还可以在超高分辨率下研究PBP的结构,以了解PBP如何在分子水平上与其天然底物和不同的已知抗生素相互作用。我们还可以使用新的化学方法,沿着我们的分析和结构生物学将帮助我们找到阻止这些酶的新方法。最后,我们汇集了来自英国各地的具有微生物学,化学和物理学技能的国际学术专家,与许多行业专家和更广泛的科学咨询小组同步密切合作。这种在广泛的技能基础上利用新技术的集中努力将有助于确保快速进展和广泛应用的结果,这对未来的抗生素发现和开发计划是有价值的。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SosA inhibits cell division in Staphylococcus aureus in response to DNA damage
SosA 抑制金黄色葡萄球菌响应 DNA 损伤的细胞分裂
- DOI:10.1101/364299
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Bojer M
- 通讯作者:Bojer M
A molecular link between cell wall biosynthesis, translation fidelity, and stringent response in Streptococcus pneumoniae.
- DOI:10.1073/pnas.2018089118
- 发表时间:2021-04-06
- 期刊:
- 影响因子:11.1
- 作者:Aggarwal SD;Lloyd AJ;Yerneni SS;Narciso AR;Shepherd J;Roper DI;Dowson CG;Filipe SR;Hiller NL
- 通讯作者:Hiller NL
Towards an automated analysis of bacterial peptidoglycan structure.
- DOI:10.1007/s00216-016-9857-5
- 发表时间:2017-01
- 期刊:
- 影响因子:4.3
- 作者:Bern, Marshall;Beniston, Richard;Mesnage, Stephane
- 通讯作者:Mesnage, Stephane
Inhibition of D-Ala:D-Ala ligase through a phosphorylated form of the antibiotic D-cycloserine.
- DOI:10.1038/s41467-017-02118-7
- 发表时间:2017-12-05
- 期刊:
- 影响因子:16.6
- 作者:Batson S;de Chiara C;Majce V;Lloyd AJ;Gobec S;Rea D;Fülöp V;Thoroughgood CW;Simmons KJ;Dowson CG;Fishwick CWG;de Carvalho LPS;Roper DI
- 通讯作者:Roper DI
Structural basis of lipopolysaccharide maturation by the O-antigen ligase.
- DOI:10.1038/s41586-022-04555-x
- 发表时间:2022-04
- 期刊:
- 影响因子:64.8
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Dowson其他文献
EFFICACY OF REPEATED INJECTIONS OF BOTULINUM TOXIN-A IN PATIENTS WITH OVERACTIVE BLADDER AND IDIOPATHIC DETRUSOR OVERACTIVITY
- DOI:
10.1016/s0022-5347(08)61293-8 - 发表时间:
2008-04-01 - 期刊:
- 影响因子:
- 作者:
Christopher Dowson;Arun Sahai;Jacques Roux;Jane Watkins;Mohammad S Khan;Prokar Dasgupta - 通讯作者:
Prokar Dasgupta
CODIFI (Concordance in Diabetic Foot Infection): Agreement in reported presence of likely pathogens in swabs and tissue samples from infected diabetic foot ulcers
- DOI:
10.1186/1757-1146-8-s1-a2 - 发表时间:
2015-04-20 - 期刊:
- 影响因子:2.200
- 作者:
Michael Backhouse;Andrea Nelson;Alexandra Wright-Hughes;Moninder Bhogal;Sarah Brown;Catherine Reynolds;Benjamin Lipsky;Christopher Dowson;Jane Nixon - 通讯作者:
Jane Nixon
ASSESSMENT OF URODYNAMICS AND DETRUSOR CONTRACTILITY FOLLOWING BOTULINUM TOXIN-A TREATMENT FOR OVERACTIVE BLADDER
- DOI:
10.1016/s0022-5347(08)61294-x - 发表时间:
2008-04-01 - 期刊:
- 影响因子:
- 作者:
Arun Sahai;Phillipa Sangster;Vinay Kalsi;Christopher Dowson;Mohammad S Khan;Derek Griffiths;Clare J Fowler;Prokar Dasgupta - 通讯作者:
Prokar Dasgupta
Repeat botulinum toxin-A injections for treatment of adult detrusor overactivity
重复注射肉毒杆菌毒素 A 治疗成人逼尿肌过度活动
- DOI:
10.1038/nrurol.2010.187 - 发表时间:
2010-12-08 - 期刊:
- 影响因子:14.600
- 作者:
Christopher Dowson;Mohammad Shamim Khan;Prokar Dasgupta;Arun Sahai - 通讯作者:
Arun Sahai
Christopher Dowson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Dowson', 18)}}的其他基金
Antimicrobial Resistance: Breakthrough Compound Discovery through Mechanistic Studies combined with Bicycle Technology and Target Validation
抗菌素耐药性:通过机理研究结合自行车技术和目标验证实现突破性化合物发现
- 批准号:
BB/Y003306/1 - 财政年份:2023
- 资助金额:
$ 412.42万 - 项目类别:
Research Grant
Developing mechanistic understanding to improve the activity of bicyclic peptides as novel antimicrobials
发展机制理解以提高双环肽作为新型抗菌剂的活性
- 批准号:
MR/W003554/1 - 财政年份:2021
- 资助金额:
$ 412.42万 - 项目类别:
Research Grant
CHNUK: Integrated platforms from science to policy in response to antibacterial resistance
CHNUK:从科学到政策的综合平台应对抗菌药物耐药性
- 批准号:
MR/S014934/1 - 财政年份:2019
- 资助金额:
$ 412.42万 - 项目类别:
Research Grant
Accelerate CHNUK AMR discovery: Establishing joint China/UK training and research platforms enabling highthroughput fragment based inhibitor discovery
加速 CHNUK AMR 发现:建立中英联合培训和研究平台,实现基于高通量片段的抑制剂发现
- 批准号:
MR/P007503/1 - 财政年份:2016
- 资助金额:
$ 412.42万 - 项目类别:
Research Grant
International exploitation of new reagents and assays for antibiotic discovery
国际上开发抗生素新试剂和检测方法
- 批准号:
BB/N00390X/1 - 财政年份:2015
- 资助金额:
$ 412.42万 - 项目类别:
Research Grant
Enabling exploitation of novel reagents and assays (EnRgy) to target the inhibition of peptidoglycan biosynthesis
能够利用新型试剂和测定法(EnRgy)来靶向抑制肽聚糖生物合成
- 批准号:
BB/M005011/1 - 财政年份:2014
- 资助金额:
$ 412.42万 - 项目类别:
Research Grant
Development and validation of new reagents and assays to exploit the final steps of peptidoglycan construction
开发和验证新试剂和检测方法,以利用肽聚糖构建的最后步骤
- 批准号:
BB/K017268/1 - 财政年份:2013
- 资助金额:
$ 412.42万 - 项目类别:
Research Grant
Team CanUK: Novel antibacterial targets, assays, probes and opportunities in bacterial cell wall biogenesis
CanUK 团队:细菌细胞壁生物发生中的新型抗菌靶点、检测方法、探针和机遇
- 批准号:
G1100127/1 - 财政年份:2012
- 资助金额:
$ 412.42万 - 项目类别:
Research Grant
相似海外基金
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
- 批准号:
2325464 - 财政年份:2024
- 资助金额:
$ 412.42万 - 项目类别:
Continuing Grant
Extreme Climatic Events in the Oceans: Towards a mechanistic understanding of ecosystem impacts and resilience
海洋极端气候事件:对生态系统影响和复原力的机械理解
- 批准号:
MR/X023214/1 - 财政年份:2024
- 资助金额:
$ 412.42万 - 项目类别:
Fellowship
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
- 批准号:
2325463 - 财政年份:2024
- 资助金额:
$ 412.42万 - 项目类别:
Continuing Grant
Imaging Life with Light and Sound: State-of-the-art Photoacoustic Imaging For Mechanistic Understanding Of Human Disease
用光和声音成像生命:最先进的光声成像用于理解人类疾病的机制
- 批准号:
MR/X012549/1 - 财政年份:2023
- 资助金额:
$ 412.42万 - 项目类别:
Research Grant
CAS: Design and Mechanistic Understanding of Emerging Metal Chalcogenide Electrocatalysts for Selective Two-Electron Oxygen Reduction
CAS:用于选择性双电子氧还原的新兴金属硫属化物电催化剂的设计和机理理解
- 批准号:
2247519 - 财政年份:2023
- 资助金额:
$ 412.42万 - 项目类别:
Continuing Grant
ERI: Mechanistic understanding of neural stem cell paracrine activity and extracellular vesicle secretion directed by wireless electrical stimulation
ERI:无线电刺激引导的神经干细胞旁分泌活性和细胞外囊泡分泌的机制理解
- 批准号:
2301908 - 财政年份:2023
- 资助金额:
$ 412.42万 - 项目类别:
Standard Grant
A mechanistic understanding of glymphatic transport and its implications in neurodegenerative disease
对类淋巴运输的机制及其在神经退行性疾病中的影响的理解
- 批准号:
10742654 - 财政年份:2023
- 资助金额:
$ 412.42万 - 项目类别:
Enabling Sulfur-Based Beyond-Lithium Metal Batteries via a Mechanistic Understanding of Advanced Hybrid Cathodes and Borate Electrolytes
通过对先进混合阴极和硼酸盐电解质的机理理解,实现硫基超锂金属电池
- 批准号:
2323065 - 财政年份:2023
- 资助金额:
$ 412.42万 - 项目类别:
Standard Grant
CAREER: Mechanistic understanding of the nanoscale interactions of structurally tunable 3D assemblies of MXenes-polyelectrolytes
职业:对 MXenes-聚电解质结构可调 3D 组件的纳米级相互作用的机理理解
- 批准号:
2238908 - 财政年份:2023
- 资助金额:
$ 412.42万 - 项目类别:
Standard Grant
Mechanistic Understanding of Multi-scale Sintering Behavior Influenced by Anisotropic Particle and Pore Distributions in Extrusion-based Metal Additive Manufacturing
基于挤压的金属增材制造中受各向异性颗粒和孔隙分布影响的多尺度烧结行为的机理理解
- 批准号:
2224309 - 财政年份:2023
- 资助金额:
$ 412.42万 - 项目类别:
Standard Grant