Exosome signalling and cellular reprogramming in the Drosophila reproductive system

果蝇生殖系统中的外泌体信号传导和细胞重编程

基本信息

  • 批准号:
    BB/K017462/1
  • 负责人:
  • 金额:
    $ 58.83万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

The critical event that takes place in the earliest stages of reproduction is the fertilisation of the egg by a single sperm within the female reproductive tract. However, for this event to happen, a number of hurdles have to be negotiated. Sperm need to be activated and mobilised after intercourse. The female also mounts an immune response to the foreign material in the ejaculate and molecules in the semen must block this. And finally, some components of semen in insects affect female behaviour to increase the number of offspring that a male can produce, and there is some evidence that this could also take place in mammals. In species as diverse as humans and fruit flies, males contain reproductive glands, like the prostate in men, which make the constituents of semen involved in these different processes. Surprisingly, we know little about the actual molecules that are responsible for these signals that pass between males and females when they mate, even though a better understanding might give us important new insights relevant to in vitro fertilisation (IVF) or contraception.Recently, it has been shown that human prostate cells release into semen small membrane-bound structures called exosomes that at least in a petri dish, can fuse to sperm and make them more mobile. In an independent study, we found that an organ in the fruit fly called the accessory gland, which secretes most of the fluid in fly semen, also makes exosomes that fuse with sperm inside the female reproductive tract after mating. These exosomes also seem to be important in affecting the female's behaviour, so that she becomes unreceptive to other males, who want to mate with her. Fortunately studies over the last 30 years in flies have revealed amazing similarities between flies and humans. About 70% of all the genes known to be involved in human disease are also found in flies and lots of the basic mechanisms by which human cells work were originally studied in flies or other simple organisms before being looked at in humans. The parallels between flies and humans suggest that if we find out how exosomes affect reproduction in flies, it is likely to give us important clues about how exosomes work in humans and other animals. The advantage we have in flies is that we can use a remarkable range of experimental tricks to mark the exosomes produced by the accessory gland in living flies, selectively block exosome secretion in this gland and remove individual components from the exosomes to test their function. As far as we are aware, this is a completely new approach and there are no other animals in which similar studies can currently be undertaken. We will try to work out whether there are different types of exosome, what they do in the female fly, how they are targeted to certain cells and which molecules within the exosome affect what the target cell does. Our findings could suggest important new research angles that will then need to be studied in human or animal reproduction. For example, if we identify a key molecule that is needed for exosomes to work, it may be possible to block that equivalent molecule in humans as part of a male contraception strategy or enhance its activity if the molecules is defective in some cases of male infertility. There will probably be additional more indirect benefits from our studies. For example, exosomes have been implicated in diseases, like cancer, where they may drive some of the early stages of tumour spreading, the most lethal aspect of this disease. Exosomes are also being developed as carriers for drugs that could be introduced into patients, and get into inaccessible organs like the brain. Our system in flies really provides the first opportunity in a living animal to address some of the basic questions that scientists working in all these areas, some of whom we work with, wish to answer, so that they can work out the best ways to design their experiments and use exosomes in medicine.
在生殖的最早阶段发生的关键事件是女性生殖道内的单个精子使卵子受精。然而,要想实现这一目标,必须克服许多障碍。交配后,精子需要被激活和动员。雌性也会对射精中的异物产生免疫反应,精液中的分子必须阻止这一反应。最后,昆虫精液中的一些成分会影响雌性的行为,从而增加雄性后代的数量,有一些证据表明,这种情况也可能发生在哺乳动物身上。在像人类和果蝇这样的物种中,雄性含有生殖腺,就像男性的前列腺一样,这使得精液的成分参与了这些不同的过程。令人惊讶的是,我们对交配时在雄性和雌性之间传递这些信号的实际分子知之甚少,尽管更好的理解可能会给我们提供与体外受精(IVF)或避孕相关的重要新见解。最近,研究表明,人类前列腺细胞释放到精液中被称为外体的小膜结合结构中,这些结构至少在培养皿中可以与精子融合,使精子更具流动性。在一项独立的研究中,我们发现果蝇体内有一个叫做副腺的器官,负责分泌果蝇精液中的大部分液体,它还会产生外体,在交配后与雌性生殖道内的精子融合。这些外显体似乎在影响雌性的行为方面也很重要,因此雌性变得不接受其他想要与她交配的雄性。幸运的是,过去30年对果蝇的研究揭示了果蝇和人类惊人的相似之处。所有已知的与人类疾病有关的基因中,约有70%也在苍蝇身上发现,许多人类细胞工作的基本机制最初是在苍蝇或其他简单生物中研究的,然后才在人类身上进行研究。果蝇和人类之间的相似之处表明,如果我们发现外切体如何影响苍蝇的生殖,很可能为我们提供关于外切体如何在人类和其他动物中发挥作用的重要线索。我们在苍蝇身上的优势是,我们可以使用一系列显著的实验技巧来标记活着的苍蝇副腺产生的外切体,选择性地阻止这个腺体中的外切体分泌,并从外切体中去除个别成分来测试它们的功能。据我们所知,这是一种全新的方法,目前还没有其他动物可以进行类似的研究。我们将试图弄清楚是否存在不同类型的外切体,它们在雌蝇身上起什么作用,它们如何定位于某些细胞,以及外切体中的哪些分子影响目标细胞的功能。我们的发现可能会提出重要的新研究角度,然后需要在人类或动物生殖方面进行研究。例如,如果我们确定了外切体工作所需的一个关键分子,那么作为男性避孕策略的一部分,我们可能会在人类中阻止这个同等的分子,或者在某些男性不育的情况下,如果分子有缺陷,就可以增强它的活性。我们的研究可能会带来更多、更间接的好处。例如,外切体与癌症等疾病有关,它们可能会导致肿瘤扩散的一些早期阶段,这是这种疾病最致命的方面。外切体也被开发成药物的载体,可以被引入患者体内,并进入难以接触到的器官,如大脑。我们在苍蝇身上的系统为活体动物提供了第一次机会来解决在所有这些领域工作的科学家希望回答的一些基本问题,我们与他们中的一些人合作,这样他们就可以找到设计他们的实验和将外显体用于医学的最佳方法。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Glutamine Deprivation Regulates the Origin and Function of Cancer Cell Exosomes
  • DOI:
    10.1101/859447
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shih‐Jung Fan;Benjamin Kroeger;Pauline P Marie;E. Bridges;John D. Mason;K. McCormick;C. Zois;H. Sheldon;N. K. Alham;Errin Johnson;M. Ellis;M. I. Stefana;C. Mendes;S. Wainwright;C. Cunningham;F. Hamdy;J. Morris;A. Harris;Clive Wilson;D. Goberdhan
  • 通讯作者:
    Shih‐Jung Fan;Benjamin Kroeger;Pauline P Marie;E. Bridges;John D. Mason;K. McCormick;C. Zois;H. Sheldon;N. K. Alham;Errin Johnson;M. Ellis;M. I. Stefana;C. Mendes;S. Wainwright;C. Cunningham;F. Hamdy;J. Morris;A. Harris;Clive Wilson;D. Goberdhan
GAPDH controls extracellular vesicle biogenesis and enhances therapeutic potential of EVs in silencing the Huntingtin gene in mice via siRNA delivery
GAPDH 控制细胞外囊泡的生物合成,并通过 siRNA 传递增强 EV 沉默小鼠亨廷顿蛋白基因的治疗潜力
  • DOI:
    10.1101/2020.01.09.899880
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dar G
  • 通讯作者:
    Dar G
GAPDH controls extracellular vesicle biogenesis and enhances the therapeutic potential of EV mediated siRNA delivery to the brain.
  • DOI:
    10.1038/s41467-021-27056-3
  • 发表时间:
    2021-11-18
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Dar GH;Mendes CC;Kuan WL;Speciale AA;Conceição M;Görgens A;Uliyakina I;Lobo MJ;Lim WF;El Andaloussi S;Mäger I;Roberts TC;Barker RA;Goberdhan DCI;Wilson C;Wood MJA
  • 通讯作者:
    Wood MJA
GAPDH controls extracellular vesicle biogenesis and enhances the therapeutic potential of EV mediated siRNA delivery to the brain
GAPDH 控制细胞外囊泡生物发生并增强 EV 介导的 siRNA 递送至大脑的治疗潜力
  • DOI:
    10.17863/cam.79476
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dar G
  • 通讯作者:
    Dar G
BMP-regulated exosomes from Drosophila male reproductive glands reprogram female behavior.
  • DOI:
    10.1083/jcb.201401072
  • 发表时间:
    2014-09-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Corrigan L;Redhai S;Leiblich A;Fan SJ;Perera SM;Patel R;Gandy C;Wainwright SM;Morris JF;Hamdy F;Goberdhan DC;Wilson C
  • 通讯作者:
    Wilson C
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clive Wilson其他文献

Cytoskeletal actin gene families ofXenopus borealis andXenopus laevis
北极爪蟾和非洲爪蟾的细胞骨架肌动蛋白基因家族
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    G. Cross;Clive Wilson;H. Erba;H. Woodland
  • 通讯作者:
    H. Woodland
Cytoplasmic activated protein kinase Akt regulates lipiddroplet lipiddroplet lipiddroplet accumulation in Drosophila nurse cells
细胞质激活蛋白激酶 Akt 调节果蝇护理细胞中脂滴的积累
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Vereshchagina;Clive Wilson
  • 通讯作者:
    Clive Wilson
Accounting for uncertainty unquantified in MCP
考虑 MCP 中未量化的不确定性
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Leo Hume;K. Walter;Clive Wilson;A. Skea;Malcolm Lee
  • 通讯作者:
    Malcolm Lee
MP55-12 THE PROTON-ASSISTED AMINO ACID TRANSPORTER 4 (PAT4/SLC36A4) IS UP-REGULATED IN PROSTATE CANCER
  • DOI:
    10.1016/j.juro.2015.02.2055
  • 发表时间:
    2015-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daniel Stevens;Claire Verrill;Richard Bryant;Chad McKee;Helen Turley;Shih-Jung Fan;Sumeth Perera;Clive Wilson;Adrian L. Harris;Freddie C. Hamdy;Deborah C.I. Goberdhan
  • 通讯作者:
    Deborah C.I. Goberdhan
The global bioequivalence harmonisation initiative: Report of EUFEPS/AAPS third conference
  • DOI:
    10.1016/j.ejps.2020.105383
  • 发表时间:
    2020-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mehul Mehta;Henning Blume;Gerald Beuerle;Nilufer Tampal;Barbara Schug;Henrike Potthast;Wenlei Jiang;Clive Wilson
  • 通讯作者:
    Clive Wilson

Clive Wilson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clive Wilson', 18)}}的其他基金

Sex Peptide-dependent microcarrier signalling in reproduction
生殖中性肽依赖性微载体信号传导
  • 批准号:
    BB/W015455/1
  • 财政年份:
    2022
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Research Grant
Regulation and activities of amyloidogenic proteins APP and TGFBI in physiological and pathological protein aggregation
淀粉样蛋白APP和TGFBI在生理和病理蛋白聚集中的调节和活性
  • 批准号:
    BB/W00707X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Research Grant
Regulation of exosome heterogeneity and function
外泌体异质性和功能的调节
  • 批准号:
    BB/R004862/1
  • 财政年份:
    2018
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Research Grant
Linking reproductive behaviour and dense core granule biogenesis in secondary cells of the Drosophila male reproductive system
将果蝇雄性生殖系统次生细胞的生殖行为与致密核心颗粒生物发生联系起来
  • 批准号:
    BB/N016300/1
  • 财政年份:
    2016
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Research Grant
Regulation and functions of male-derived shed microvesicles in Drosophila reproduction
果蝇繁殖中雄性脱落微泡的调节和功能
  • 批准号:
    BB/L007096/1
  • 财政年份:
    2014
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Research Grant

相似国自然基金

富含半胱氨酸分泌亚家族3蛋白与钙释放通道的相互作用
  • 批准号:
    30870508
  • 批准年份:
    2008
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
信号转导分子PAK4相互作用蛋白质的筛选
  • 批准号:
    30370736
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Novel mechano-signalling pathways at sites of cellular adhesion
细胞粘附位点的新型机械信号传导途径
  • 批准号:
    DP240101768
  • 财政年份:
    2024
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Discovery Projects
Investigating neuroprotective strategies in genetic models of neurodegeneration
研究神经退行性变遗传模型中的神经保护策略
  • 批准号:
    478268
  • 财政年份:
    2023
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Operating Grants
Micronuclei as integrators of cellular DNA damage responses
微核作为细胞 DNA 损伤反应的整合者
  • 批准号:
    488664
  • 财政年份:
    2023
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Operating Grants
Integrated Imaging Tools for Intercellular Chemokine Signalling
用于细胞间趋化因子信号转导的集成成像工具
  • 批准号:
    10706896
  • 财政年份:
    2023
  • 资助金额:
    $ 58.83万
  • 项目类别:
Cellular signalling mechanisms during pollen-pistil interactions in Brassicaceae
十字花科花粉-雌蕊相互作用过程中的细胞信号机制
  • 批准号:
    RGPIN-2020-05301
  • 财政年份:
    2022
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Discovery Grants Program - Individual
Signalling and regulation of autophagy-related pathways during cellular differentiation of African trypanosomes.
非洲锥虫细胞分化过程中自噬相关途径的信号传导和调节。
  • 批准号:
    MR/W026996/1
  • 财政年份:
    2022
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Fellowship
Role and regulation of EPB41L5 in cancer-promoting cellular processes
EPB41L5 在促癌细胞过程中的作用和调节
  • 批准号:
    469802
  • 财政年份:
    2022
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Operating Grants
DNA event recording of the pericellular microenvironment, to understand the causes and mechanisms of beta-cell loss in pancreatic islet tissue
细胞周微环境的 DNA 事件记录,以了解胰岛组织中 β 细胞损失的原因和机制
  • 批准号:
    472586
  • 财政年份:
    2022
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Operating Grants
Micronuclei as integrators of cellular DNA damage responses
微核作为细胞 DNA 损伤反应的整合者
  • 批准号:
    472558
  • 财政年份:
    2022
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Operating Grants
Cellular Signalling and Cancer Metastasis
细胞信号传导和癌症转移
  • 批准号:
    CRC-2021-00161
  • 财政年份:
    2022
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Canada Research Chairs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了