Understanding microtubule regulation during the making and maintenance of axons
了解轴突形成和维护过程中的微管调节
基本信息
- 批准号:BB/L000717/1
- 负责人:
- 金额:$ 51.56万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Axons are slender processes of neurons extending up to meters across the body, serving as information highways that wire the nervous system. Failure to grow axons during development is either fatal or causes developmental brain disorders. Failure to re-grow axons after injury or stroke is an essential cause for lifelong disabilities. Failure to maintain axons in the ageing brain is considered an important cause of neurodegeneration. Pharmacological studies have demonstrated that axon growth and maintenance are essentially mediated by the highly dynamic microtubule (MT) cytoskeleton. However, how MTs are genetically regulated to promote axon growth and maintenance is not understood. The overarching aim of this project is to deliver such understanding, thus bridging an important gap in our knowledge about brain development, regeneration and ageing in both health and disease. MTs are filamentous, highly dynamic tubulin polymers that form the backbone of axons. MTs provide structural support to axons as well as highways of intracellular transport from and to the cell body. The directed extension of MTs drives axon growth, whereas their destabilisation correlates with axon retraction or degeneration. MT dynamics continue throughout an axon's life (i.e. up to decades) suggesting that axonal maintenance involves steady-state turn-over of MTs. MTs extend/retract through polymerisation/depolymerisation at their plus ends, and their plus ends interact with the intracellular environment to determine the direction and extend of MT elongation. Various proteins have been reported to regulate MT plus end dynamics, and these include EBs (end binding proteins), +TIPs (proteins binding to EBs), XMAP215 (polymerising MTs), DOUBLECORTIN (stabilising MT plus ends), STATHMIN (sequestering free tubulin), and proteins of cell cortex and organelles that can interact with MT plus ends. The principal molecular functions of most of these MT plus end regulators are known in vitro, and various have been linked to brain disorders clearly illustrating their importance in the nervous system. However, functional studies of these proteins in different neuron systems have produced only mild axon phenotypes (if any), falling short of demonstrating the essential roles that MT plus end dynamics are expected to play during axon growth and maintenance. I hypothesise that the different MT plus end regulators contribute to one common MT plus end machinery and that their functions overlap within this machinery. Deciphering this machinery and identifying the key set of components that drive axon growth and maintenance is therefore an important challenge and the overarching objective of this project. This challenge requires novel approaches. We use a simple genetic model organism, the fruit fly Drosophila. Research in Drosophila is fast, cheap and capitalises on efficient genetic strategies. It has been a powerhouse for the discovery of mechanisms and concepts underpinning brain development and function, many of which are evolutionary well conserved and have laid important foundations for research in higher animals. We have 8 years of experience with work on cytoskeletal regulation during axon growth in Drosophila and have provided substantial proof of principle that novel understanding can be generated and applied to higher animals. Our pilot studies of MT plus end regulators reveal characteristic axon aberrations and allow us to formulate detailed working models. On this basis, we will study cellular mechanisms of MT plus end regulators and functional links between them. Our work will prove the importance of MT plus end machinery during axon growth and maintenance and deliver a step change in understanding of how this machinery works. This will have important implications for research on developmental brain disorders, neuroregeneration, neurodegenerative diseases and ageing.
轴突是神经元的细长过程,该神经元延伸到整个体内,充当神经系统电线的信息高速公路。发育过程中未能生长轴突是致命的,要么引起发育性脑部疾病。受伤或中风后不重新生长轴突是终身残疾的重要原因。无法在衰老大脑中维持轴突被认为是神经退行性的重要原因。药理学研究表明,轴突生长和维持基本上是由高度动态的微管(MT)细胞骨架介导的。但是,尚不清楚如何在基因调节MT遗传调节以促进轴突的生长和维持。该项目的总体目的是提供这种理解,从而弥合我们对健康和疾病中大脑发育,再生和衰老的重要差距。 MT是形成轴突骨架的丝状,高度动态的微管蛋白聚合物。 MT为轴突以及细胞内转运的高速公路提供结构支撑。 MTS的定向延伸驱动轴突的生长,而它们的不稳定与轴突回缩或变性有关。 MT动力学在整个轴突的生命(即数十年)中继续,这表明轴突维持涉及MT的稳态转换。 MT通过聚合/解聚末端扩展/缩回,其加末端与细胞内环境相互作用,以确定MT伸长的方向和延伸。 Various proteins have been reported to regulate MT plus end dynamics, and these include EBs (end binding proteins), +TIPs (proteins binding to EBs), XMAP215 (polymerising MTs), DOUBLECORTIN (stabilising MT plus ends), STATHMIN (sequestering free tubulin), and proteins of cell cortex and organelles that can interact with MT plus ends.大多数这些MT Plus最终调节剂的主要分子功能在体外都是已知的,并且各种与脑疾病有关,清楚地说明了它们在神经系统中的重要性。然而,这些蛋白质在不同神经元系统中的功能研究仅产生了轻度的轴突表型(如果有的话),没有证明MT Plus End Dynamics在轴突生长和维持过程中发挥作用的基本作用。我假设不同的MT Plus End调节器有助于一种常见的MT Plus End机械,并且它们的功能在此机械中重叠。因此,破译这种机械并确定驱动轴突增长和维护的组件集集是该项目的重要挑战和总体目标。 这个挑战需要新颖的方法。我们使用简单的遗传模型生物,即果蝇果蝇。果蝇的研究快速,便宜,并利用有效的遗传策略。它一直是发现脑发育和功能的机制和概念的强大力量,其中许多是进化良好的保守性,并为高等动物的研究奠定了重要的基础。我们在果蝇轴突生长期间在轴突生长过程中有8年的研究经验,并提供了实质性的原则证明,可以产生新的理解并应用于高等动物。我们对MT Plus最终调节器的试点研究揭示了特征性的轴突畸变,并使我们能够制定详细的工作模型。在此基础上,我们将研究MT Plus最终调节剂的细胞机制以及它们之间的功能联系。我们的工作将证明MT Plus End机械在轴突增长和维护过程中的重要性,并在理解该机械工作方式方面做出了变化。这将对有关发育性脑疾病,神经病变,神经退行性疾病和衰老的研究具有重要意义。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automated approaches for the qualitative and quantitative analysis of microtubule networks
微管网络定性和定量分析的自动化方法
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Costa-Gomes B
- 通讯作者:Costa-Gomes B
Drosophila CLIP-190 and mammalian CLIP-170 display reduced microtubule plus end association in the nervous system.
- DOI:10.1091/mbc.e14-06-1083
- 发表时间:2015-04-15
- 期刊:
- 影响因子:3.3
- 作者:Beaven R;Dzhindzhev NS;Qu Y;Hahn I;Dajas-Bailador F;Ohkura H;Prokop A
- 通讯作者:Prokop A
A novel electronic assessment strategy to support applied Drosophila genetics training in university courses.
- DOI:10.1534/g3.115.017509
- 发表时间:2015-02-25
- 期刊:
- 影响因子:0
- 作者:Fostier M;Patel S;Clarke S;Prokop A
- 通讯作者:Prokop A
ALFRED: automated image analysis application to inform mathematical modelling of microtubule networks in nerve cells
ALFRED:自动图像分析应用程序,为神经细胞中微管网络的数学建模提供信息
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Costa-Gomes, B.
- 通讯作者:Costa-Gomes, B.
Functional and Genetic Analysis of Spectraplakins in Drosophila.
- DOI:10.1016/bs.mie.2015.06.022
- 发表时间:2015-08
- 期刊:
- 影响因子:0
- 作者:Ines Hahn;M. Ronshaugen;N. Sánchez-Soriano;A. Prokop
- 通讯作者:Ines Hahn;M. Ronshaugen;N. Sánchez-Soriano;A. Prokop
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreas Prokop其他文献
03-P003 Drosophila growth cones: A new window into microtubule and actin dynamics
- DOI:
10.1016/j.mod.2009.06.056 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:
- 作者:
Andreas Prokop;Natalia Sanchez-Soriano;Catarina Goncalvez-Pimentel;Robin Beaven - 通讯作者:
Robin Beaven
A common precursor for glia and neurons in the embryonic CNS of Drosophila gives rise to segment-specific lineage variants.
果蝇胚胎中枢神经系统中神经胶质细胞和神经元的共同前体产生了片段特异性谱系变异。
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:4.6
- 作者:
Gerald Udolph;Andreas Prokop;T. Bossing;G. Technau - 通讯作者:
G. Technau
Andreas Prokop的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andreas Prokop', 18)}}的其他基金
The mechanistic basis and potential disease relevance of microtubule disorganisation in axons
轴突微管紊乱的机制基础和潜在疾病相关性
- 批准号:
BB/P020151/1 - 财政年份:2018
- 资助金额:
$ 51.56万 - 项目类别:
Research Grant
The fundamental roles of axonal actin during neuronal growth and longevity
轴突肌动蛋白在神经元生长和寿命中的基本作用
- 批准号:
BB/M007553/1 - 财政年份:2015
- 资助金额:
$ 51.56万 - 项目类别:
Research Grant
Towards an understanding of cytoskeletal dynamics: coupling systematic fly genetics with computational modelling
了解细胞骨架动力学:将系统果蝇遗传学与计算模型结合起来
- 批准号:
BB/L026724/1 - 财政年份:2014
- 资助金额:
$ 51.56万 - 项目类别:
Research Grant
The role of spectraplakins as key integrators of axonal microtubule networks
Spectraplakins 作为轴突微管网络关键整合者的作用
- 批准号:
BB/I002448/1 - 财政年份:2011
- 资助金额:
$ 51.56万 - 项目类别:
Research Grant
Ultrastructure and regulation of adhesion at a genetically tractable model synapse
遗传易处理模型突触的超微结构和粘附调节
- 批准号:
BB/E009085/1 - 财政年份:2007
- 资助金额:
$ 51.56万 - 项目类别:
Research Grant
相似国自然基金
相分离介导的微管精准切割机制研究
- 批准号:32300582
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SIRT5通过抑制Tau苹果酰化维持微管稳定性和小鼠认知功能的作用及机制研究
- 批准号:82301607
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
内质网蛋白Mnr1调控微管组装的机制研究
- 批准号:32300563
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水稻OsIPGAs凝聚体调控微管骨架与粒型的机制研究
- 批准号:32301866
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
蛋白激酶NEK9通过调节TFE3和STMN1的磷酸化修饰促进微管解聚导致胃癌转移的机制研究
- 批准号:82303426
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
How do cortical microtubules localize on cell cortex? - toward understanding its regulation and evolutionary implications.
皮质微管如何定位在细胞皮质上?
- 批准号:
23K05805 - 财政年份:2023
- 资助金额:
$ 51.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding the mechanism of actin-microtubule co-regulation underlying neurodegeneration in motor neurons
了解肌动蛋白-微管共同调节运动神经元神经变性的机制
- 批准号:
2441790 - 财政年份:2020
- 资助金额:
$ 51.56万 - 项目类别:
Studentship
Understanding in spatio-temporal regulation mechanism of thrombus formation and dissolution for realization of appropriate antithrombotic therapy
了解血栓形成和溶解的时空调节机制,实现适当的抗血栓治疗
- 批准号:
19K08577 - 财政年份:2019
- 资助金额:
$ 51.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding the mechanism of gravity resistance in plants: Roles of actin filaments in regulation of cell shape
了解植物的重力抵抗机制:肌动蛋白丝在细胞形状调节中的作用
- 批准号:
25514005 - 财政年份:2013
- 资助金额:
$ 51.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding the Mechanism and Regulation of the Human Cytoplasmic Dynein Complex
了解人类细胞质动力蛋白复合物的机制和调节
- 批准号:
9267494 - 财政年份:2011
- 资助金额:
$ 51.56万 - 项目类别: