LINEAGE CONVERSION OF BLOOD-DERIVED ENDOTHELIAL PROGENITOR CELLS TO AN ADRENOCORTICAL PHENOYPE: A NEW TECHNOLOGY TO STUDY THE ADRENAL GLAND.
血源性内皮祖细胞向肾上腺皮质表型的谱系转换:研究肾上腺的新技术。
基本信息
- 批准号:BB/L002671/1
- 负责人:
- 金额:$ 47.01万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The adrenal glands are part of the endocrine system, which releases hormones into the blood system. Each adrenal gland is anatomically and functionally composed of two distinct parts, an outer cortex and inner medulla. The adrenal cortex is essential for life: it produces glucocorticoids that regulate body metabolism, and mineralocorticoids that affect blood pressure. Adrenal cortex disorders can cause your adrenal glands to produce too much or not enough hormones; some disorders can be determined by genetic mutations. Adrenal studies are usually carried out by using cell lines established from tumors or cell lines transfected with a gene of interest: both systems have several drawbacks such as the inability to produce a full steroid profile or the inherent difficulty to extrapolate physiologically relevant data from an over-expression system. Animal models are also frequently used to investigate the development, function and pathology of adrenal glands, as well as for testing new treatments and for toxicology studies. However some animal models obtained through knockout technology fail to generate the human disease (Triple-A syndrome and NNT dependent-Familial Glucocorticoid Deficiency are two examples in the adrenal field). Cell reprogramming techniques are becoming powerful tools for replacing animal models and procedures as well as for studying the cause of a particular disease and for drug testing. Cellular reprogramming describes the process where a fully differentiated, specialized cell type is induced to transform into a different cell type that it would not otherwise become under normal physiological conditions. Cellular reprogramming has been achieved using a variety of methods, including somatic cell nuclear transfer, cell-cell fusion and, most recently, through the introduction of transcription factors. Two scientists, Sir John Gordon of Britain and Shinya Yamanaka of Japan were awarded the Nobel Prize for the category Physiology and Medicine in 2012 for their groundbreaking discoveries in the field. Gordon's research was conducted in 1962 and showed that it was possible to reverse the specialization of cells. By transferring a nucleus from a frog's intestinal cell into a frog's egg cell that had its nucleus removed, he was able to obtain a tadpole. Building on Gordon's work, Yamanaka published a paper in 2006 demonstrating that mature murine cells can become immature stem cells (called inducible pluripotent stem cells, IPSCs) by expressing genes encoding four transcription factors. IPSCs can be differentiated to several tissues using specific protocols. Yamanaka's breakthrough opened the door to studying disease and developing diagnosis and treatments. Recently, the generation of a cell type from an unrelated cell type without the need of an IPSCs intermediate has been described by using specific cell fate-transcription factors. This process has been named lineage conversion. Regardless of the method used, skin fibroblasts have been a predominant source material so far but an invasive surgical procedure (skin biopsy) is required to establish primary cells, and not always possible. A blood draw would be an ideal starting point to obtain donor-specific cells because it is minimally invasive and established procedures are already in place for acquisition and handling. In fact, scientists have recently employed this patient-friendly way to establish long-term in vitro culture of blood-derived cells, and importantly, they have been able to reprogram efficiently these cells into IPSCs. One of these cell types are late-outgrowth endothelial progenitor cells (L-EPCs).With this proposal, I aim at developing a technology whereby L-EPCs are reprogrammed to acquire an adrenocortical phenotype using lineage conversion, by forcing the expression of single cell fate regulator, Steroidogenic Factor 1.
肾上腺是内分泌系统的一部分,它向血液系统释放激素。每个肾上腺在解剖学上和功能上由两个不同的部分组成,外皮质和内髓质。肾上腺皮质对生命至关重要:它产生调节身体代谢的糖皮质激素和影响血压的盐皮质激素。肾上腺皮质疾病会导致肾上腺产生过多或不足的激素;有些疾病可以由基因突变决定。肾上腺研究通常通过使用从肿瘤建立的细胞系或用感兴趣的基因转染的细胞系来进行:这两种系统都有几个缺点,例如不能产生完整的类固醇谱或从过表达系统推断生理学相关数据的固有困难。动物模型也经常用于研究肾上腺的发育,功能和病理学,以及用于测试新的治疗方法和毒理学研究。然而,通过基因敲除技术获得的一些动物模型未能产生人类疾病(三A综合征和NNT依赖性家族性糖皮质激素缺乏症是肾上腺领域的两个例子)。细胞重编程技术正在成为替代动物模型和程序以及研究特定疾病原因和药物测试的强大工具。细胞重编程描述了一个过程,其中一个完全分化的,专门的细胞类型被诱导转化为一个不同的细胞类型,它不会成为在正常的生理条件下。细胞重编程已经使用多种方法实现,包括体细胞核转移、细胞-细胞融合以及最近通过引入转录因子。2012年,英国的约翰·戈登爵士和日本的山中伸弥因在该领域的突破性发现而获得诺贝尔生理学和医学奖。戈登的研究是在1962年进行的,表明逆转细胞的特化是可能的。通过将青蛙肠细胞的细胞核转移到去除细胞核的青蛙卵细胞中,他能够获得蝌蚪。基于Gordon的工作,Yamanaka在2006年发表了一篇论文,证明成熟的鼠细胞可以通过表达编码四种转录因子的基因而成为未成熟的干细胞(称为诱导性多能干细胞,IPSC)。IPSC可以使用特定的方案分化成几种组织。山中伸弥的突破为研究疾病、开发诊断和治疗方法打开了大门。最近,已经描述了通过使用特定的细胞命运-转录因子从不相关的细胞类型产生细胞类型而不需要IPSC中间体。这个过程被称为血统转换。无论使用哪种方法,皮肤成纤维细胞迄今为止一直是主要的来源材料,但需要侵入性外科手术(皮肤活检)来建立原代细胞,并且并不总是可能的。抽血将是获得供体特异性细胞的理想起点,因为它是微创的,并且已经建立了用于获取和处理的程序。事实上,科学家们最近采用了这种对患者友好的方法来建立血液来源细胞的长期体外培养,重要的是,他们已经能够有效地将这些细胞重新编程为IPSC。这些细胞类型之一是晚期生长内皮祖细胞(L-EPCs)。有了这个建议,我的目标是开发一种技术,使L-EPCs重新编程,获得一个肾上腺皮质表型使用谱系转换,通过迫使单细胞命运调节因子,类固醇生成因子1的表达。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Role of
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:R. Witteles;Lane Bldg Ste
- 通讯作者:R. Witteles;Lane Bldg Ste
Glucocorticoid replacement therapies: past, present and future.
糖皮质激素替代疗法:过去、现在和未来。
- DOI:10.1016/j.coemr.2019.08.011
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Liew SY
- 通讯作者:Liew SY
IGSF10 mutations dysregulate gonadotropin-releasing hormone neuronal migration resulting in delayed puberty.
- DOI:10.15252/emmm.201606250
- 发表时间:2016-06
- 期刊:
- 影响因子:11.1
- 作者:Howard SR;Guasti L;Ruiz-Babot G;Mancini A;David A;Storr HL;Metherell LA;Sternberg MJ;Cabrera CP;Warren HR;Barnes MR;Quinton R;de Roux N;Young J;Guiochon-Mantel A;Wehkalampi K;André V;Gothilf Y;Cariboni A;Dunkel L
- 通讯作者:Dunkel L
HS6ST1 Insufficiency Causes Self-Limited Delayed Puberty in Contrast With Other GnRH Deficiency Genes.
与其他 GnRH 缺乏基因相比,HS6ST1 不足会导致自限性青春期延迟。
- DOI:10.1210/jc.2018-00646
- 发表时间:2018-09-01
- 期刊:
- 影响因子:0
- 作者:Howard SR;Oleari R;Poliandri A;Chantzara V;Fantin A;Ruiz-Babot G;Metherell LA;Cabrera CP;Barnes MR;Wehkalampi K;Guasti L;Ruhrberg C;Cariboni A;Dunkel L
- 通讯作者:Dunkel L
Contributions of Function-Altering Variants in Genes Implicated in Pubertal Timing and Body Mass for Self-Limited Delayed Puberty.
- DOI:10.1210/jc.2017-02147
- 发表时间:2018-02-01
- 期刊:
- 影响因子:0
- 作者:Howard SR;Guasti L;Poliandri A;David A;Cabrera CP;Barnes MR;Wehkalampi K;O'Rahilly S;Aiken CE;Coll AP;Ma M;Rimmington D;Yeo GSH;Dunkel L
- 通讯作者:Dunkel L
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonardo Guasti其他文献
Rare variants in the emMECP2/em gene in girls with central precocious puberty: a translational cohort study
中枢性性早熟女孩 emMECP2/em 基因罕见变异:一项转化队列研究
- DOI:
10.1016/s2213-8587(23)00131-6 - 发表时间:
2023-08-01 - 期刊:
- 影响因子:41.800
- 作者:
Ana P M Canton;Flávia R Tinano;Leonardo Guasti;Luciana R Montenegro;Fiona Ryan;Deborah Shears;Maria Edna de Melo;Larissa G Gomes;Mariana P Piana;Raja Brauner;Rafael Espino-Aguilar;Arancha Escribano-Muñoz;Alyssa Paganoni;Jordan E Read;Márta Korbonits;Carlos E Seraphim;Silvia S Costa;Ana Cristina Krepischi;Alexander A L Jorge;Alessia David;Ana Claudia Latronico - 通讯作者:
Ana Claudia Latronico
Microbiological characterization of a population affected by periodontitis with different levels of bone health
不同骨骼健康水平的受牙周炎影响人群的微生物学特征
- DOI:
10.57582/ijbf.230302.078 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Leonardo Guasti;L. Cianferotti;B. Pampaloni;M. Duradoni;Francesco Tonelli;Magda Passafaro;Francesco Martelli;T. Iantomasi;M. L. Brandi - 通讯作者:
M. L. Brandi
Leonardo Guasti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leonardo Guasti', 18)}}的其他基金
Generation of functional adrenocortical organoids from mice and humans and their preclinical testing as cell-based therapy for adrenal insufficiency
从小鼠和人类中生成功能性肾上腺皮质类器官及其作为肾上腺功能不全细胞疗法的临床前测试
- 批准号:
MR/X021017/1 - 财政年份:2024
- 资助金额:
$ 47.01万 - 项目类别:
Research Grant
The contribution of capsular and subcapsular progenitor cells in homeostatic adrenal cortex self-renewal and zonal-specific remodelling.
被膜和被膜下祖细胞在稳态肾上腺皮质自我更新和区域特异性重塑中的贡献。
- 批准号:
BB/V007246/1 - 财政年份:2021
- 资助金额:
$ 47.01万 - 项目类别:
Research Grant
相似海外基金
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
- 批准号:
2419343 - 财政年份:2024
- 资助金额:
$ 47.01万 - 项目类别:
Standard Grant
CAS: Supported Intermetallic Catalysts for Tandem Conversion of Light Alkanes and CO2
CAS:用于轻质烷烃和 CO2 串联转化的负载型金属间催化剂
- 批准号:
2400183 - 财政年份:2024
- 资助金额:
$ 47.01万 - 项目类别:
Standard Grant
Stage IV胃癌に対するconversion surgeryにおける化学療法の奏効度とctDNAの関連
IV期胃癌转化手术化疗疗效与ctDNA的关系
- 批准号:
24K19353 - 财政年份:2024
- 资助金额:
$ 47.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Electro-fermentation process design for efficient CO2 conversion into value-added products
电发酵工艺设计可有效地将二氧化碳转化为增值产品
- 批准号:
EP/Y002482/1 - 财政年份:2024
- 资助金额:
$ 47.01万 - 项目类别:
Research Grant
FABB-HVDC (Future Aerospace power conversion Building Blocks for High Voltage DC electrical power systems)
FABB-HVDC(高压直流电力系统的未来航空航天电力转换构建模块)
- 批准号:
10079892 - 财政年份:2024
- 资助金额:
$ 47.01万 - 项目类别:
Legacy Department of Trade & Industry
Direct conversionによる誘導腱細胞を用いた横隔膜筋腱複合体MTCシートの開発
使用诱导肌腱细胞直接转化开发膈肌肌腱复合体 MTC 片
- 批准号:
24K10982 - 财政年份:2024
- 资助金额:
$ 47.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design of Nanoporous BCN with Tunable Pores for CO2 Capture and Conversion
用于 CO2 捕获和转化的具有可调孔径的纳米多孔 BCN 的设计
- 批准号:
DP240102528 - 财政年份:2024
- 资助金额:
$ 47.01万 - 项目类别:
Discovery Projects
Solar-powered methanol conversion for on-demand hydrogen production
太阳能甲醇转化用于按需制氢
- 批准号:
DE240100810 - 财政年份:2024
- 资助金额:
$ 47.01万 - 项目类别:
Discovery Early Career Researcher Award
Solar driven methane conversion for green methanol production
太阳能驱动的甲烷转化用于绿色甲醇生产
- 批准号:
FT230100251 - 财政年份:2024
- 资助金额:
$ 47.01万 - 项目类别:
ARC Future Fellowships
Sustainable, Low-cost and Durable Polymers for Green Hydrogen Conversion Technologies
用于绿色氢转换技术的可持续、低成本且耐用的聚合物
- 批准号:
EP/Y003543/1 - 财政年份:2024
- 资助金额:
$ 47.01万 - 项目类别:
Research Grant














{{item.name}}会员




