13TSB_SynBio: Synthetic biology to improve antibiotic production
13TSB_SynBio:利用合成生物学提高抗生素产量
基本信息
- 批准号:BB/L004453/1
- 负责人:
- 金额:$ 25.36万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bacterial infections are a major cause of death world wide and antibiotics provide one key resource for controlling them.Mupirocin is a successful antibiotic used against Gram positive bacteria, particularly MRSA which is associated with bothhospital- and community-acquired infections and is resistant to most currently available antibiotics. It is also a standardtreatment to remove MRSA from the skin and nose of healthcare workers. The market for the antibiotic is growing in Chinaand other parts of the developing world and GSK wish to increase production without expanding production-plant/fermentercapacity or running costs. The Thomas group have carried out extensive research on the mupirocin biosynthetic cluster inthe soil bacterium Pseudomonas fluorescens and have studied how the genes are switched on and controlled. As a result,we have clear strategies for increasing production by manipulating the gene cluster.However, the set of genes coding for the protein factory that makes mupirocin is complex and occupies a segment of about75,000 base pairs of DNA. There are more than 30 genes in the cluster so that it is difficult to manipulate it. Syntheticbiology (building the genes from chemcially made DNA to our own design) should provide a convenient way to do this andthis project gives an opportunity to validate that idea. By rebuilding the genes we can change the code so that it isoptimised for fast and increased protein synthesis and at the same time we can split the DNA into convenient "Biobricks"(the building blocks for Synthetic Biology) which can be assembled in different orders and supplemented with additionalDNA sequences that increase the extent to which they are switched on.Confidence that the current gene cluster is not the only efficient way to configure the genes comes from our discovery thatthe genes that make a related plasmid called thiomarinol are arranged in a different order. On top of that we have foundthat increased production of the activator MupR, in the existing genetic organisation, can increase production up to 20-fold.We will therefore first introduce mutations that produce more MupR and we will then systematically insert DNA thatpromotes expression of these genes in a MupR-dependent way, to increase the productivity of each bacterium. We will usestate of the art techniques to assess the effect of these changes and see how it affects antibiotic production in shake flasksand then on a larger scale in fermenters. If successful, these changes will be incorporated into the design of the newgenes.Another feature of the gene cluster is that the order of genes is not very logical - often genes in a cluster are lined up in theway they work in the biochemical pathway. We will therefore shuffle the mupirocin gene (Biobrick) order to increasepathway efficiency and we will screen derivatives for increased production. We will do this using an enzyme (Int) thatdeliberately shuffles genes in bacteria. We will insert DNA that allows Int to work between Biobricks and then transientlyexpress Int to shuffle the genes to produce many permutations of gene order. This approach has been validated by othersand shown to improve the efficiency of the E. coli tryptophan biosynthetic operon - a well studied model system. Bacteriawill be assessed for increased production in the lab and in fermenters as above.Finally, to explore how the genes can be further improved we will add extra functional units to key modules of the pathwayto increase throughput capacity and to fuse genes to create new multifunctional genes. Gene fusions may increaseefficiency by ensuring that protein partners fold together and subsequently catalyse successive enzymic steps moreefficiently. Examples of both of these sorts of changes are found in other biosynthetic factories.
细菌感染是世界范围内死亡的主要原因,抗生素是控制细菌感染的一个关键资源。莫匹罗星是一种成功的抗生素,用于治疗革兰氏阳性细菌,特别是与医院和社区获得性感染相关的MRSA,并且对大多数现有抗生素具有耐药性。从医护人员的皮肤和鼻子上去除MRSA也是一种标准的治疗方法。这种抗生素的市场在中国和其他发展中国家正在增长,葛兰素史克希望在不扩大生产工厂/发酵能力或运营成本的情况下增加产量。托马斯小组对土壤细菌荧光假单胞菌中的莫匹罗星生物合成簇进行了广泛的研究,并研究了这些基因是如何开启和控制的。因此,我们有明确的策略来通过操纵基因簇来增加产量。然而,编码制造莫匹罗星的蛋白质工厂的一组基因是复杂的,占据了大约75,000个碱基对的DNA片段。这个集群中有30多个基因,因此很难操纵它。合成生物学(从化学合成的DNA到我们自己的设计来构建基因)应该提供一个方便的方法来做到这一点,而这个项目提供了一个验证这个想法的机会。通过重建基因,我们可以改变代码,使其能够快速和增加蛋白质合成,同时我们可以将DNA分裂成方便的“生物砖”(合成生物学的构建块),可以按不同的顺序组装,并补充额外的DNA序列,以增加它们被打开的程度。目前的基因簇并不是配置基因的唯一有效方式,这一信心来自于我们的发现,即构成相关质粒硫代玛油醇的基因是以不同的顺序排列的。最重要的是,我们发现在现有的遗传组织中,增加激活子MupR的产量可以使产量增加20倍。因此,我们将首先引入产生更多MupR的突变,然后我们将系统地插入以依赖MupR的方式促进这些基因表达的DNA,以提高每种细菌的生产力。我们将使用最先进的技术来评估这些变化的影响,看看它如何影响摇瓶中的抗生素生产,然后在发酵罐中进行更大规模的生产。如果成功,这些变化将被纳入新基因的设计中。基因簇的另一个特点是基因的顺序不是很合乎逻辑——通常,基因簇中的基因是按照它们在生化途径中的工作方式排列的。因此,我们将对莫匹罗星基因(Biobrick)进行洗牌,以提高途径效率,我们将筛选衍生物以增加产量。我们将使用一种酶(Int)来做到这一点,这种酶会故意打乱细菌中的基因。我们将插入允许Int在生物砖之间工作的DNA,然后短暂地表达Int来洗牌基因,以产生许多基因顺序的排列。这种方法已经被其他人验证,并被证明可以提高大肠杆菌色氨酸生物合成操纵子的效率——一个被充分研究的模型系统。如上所述,将在实验室和发酵罐中评估细菌以增加产量。最后,为了探索如何进一步改善基因,我们将在通路的关键模块中添加额外的功能单元,以增加吞吐量并融合基因以创建新的多功能基因。基因融合可以确保蛋白质伴侣折叠在一起,从而更有效地催化连续的酶步骤,从而提高效率。这两种变化的例子都可以在其他生物合成工厂找到。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Thomas其他文献
Motion modelling and motion compensated reconstruction of tumours in cone-beam computed tomography
锥形束计算机断层扫描中肿瘤的运动建模和运动补偿重建
- DOI:
10.1109/mmbia.2012.6164764 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
James Martin;J. McClelland;Christopher Thomas;Kate Wildermuth;D. Landau;S. Ourselin;D. Hawkes - 通讯作者:
D. Hawkes
An Investigation Into the Relationship Between Maximum Isometric Strength and Vertical Jump Performance
最大等长力量与垂直弹跳性能关系的研究
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:3.2
- 作者:
Christopher Thomas;Paul A. Jones;J. Rothwell;C. Chiang;P. Comfort - 通讯作者:
P. Comfort
Context as Content in Urban Teacher Education
作为城市教师教育内容的情境
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
P. Williamson;Xornam S. Apedoe;Christopher Thomas - 通讯作者:
Christopher Thomas
Managing Lymphedema in Fracture Care: Current Concepts and Treatment Principles.
骨折护理中的淋巴水肿管理:当前概念和治疗原则。
- DOI:
10.5435/jaaos-d-19-00722 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Christopher Thomas;Jessica T. Le;E. Benson - 通讯作者:
E. Benson
An up-to-date knowledge-based literature search and exploration framework for focused bioscience domains
针对生物科学重点领域的最新的基于知识的文献检索和探索框架
- DOI:
10.1145/2110363.2110396 - 发表时间:
2012 - 期刊:
- 影响因子:4.5
- 作者:
Ramakanth Kavuluru;Christopher Thomas;A. Sheth;Victor Chan;Wenbo Wang;Alan Smith;Armando Soto;Amy Walters - 通讯作者:
Amy Walters
Christopher Thomas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Thomas', 18)}}的其他基金
Simone Weil Research Network United Kingdom
英国西蒙娜·韦尔研究网络
- 批准号:
AH/W000083/1 - 财政年份:2021
- 资助金额:
$ 25.36万 - 项目类别:
Research Grant
Plasmid biology underpinning development of a novel plasmid displacement technology to eliminate antibiotic resistance genes
质粒生物学支持开发新型质粒置换技术以消除抗生素抗性基因
- 批准号:
BB/S003533/1 - 财政年份:2018
- 资助金额:
$ 25.36万 - 项目类别:
Research Grant
Developing the Mupirocin QS system of P fluorescens into an efficient and economical way to control industrial production of high value products
将荧光磷莫匹罗星 QS 系统开发为控制高价值产品工业生产的高效且经济的方法
- 批准号:
BB/M028739/1 - 财政年份:2015
- 资助金额:
$ 25.36万 - 项目类别:
Research Grant
Novel hybrid anti-MRSA antibiotics from manipulation of the mupirocin and thiomarinol biosynthetic pathways
莫匹罗星和thiomarinol生物合成途径的新型混合抗MRSA抗生素
- 批准号:
BB/I014373/1 - 财政年份:2011
- 资助金额:
$ 25.36万 - 项目类别:
Research Grant
HYDROMAL: Hydro-dynamic drivers of malaria transmission hazard in Africa
水力:非洲疟疾传播危险的水力驱动因素
- 批准号:
NE/H022740/1 - 财政年份:2011
- 资助金额:
$ 25.36万 - 项目类别:
Research Grant
Mapping Ecosystem Services for Agricultural Improvement and Human Health in Sub-Saharan Africa
绘制撒哈拉以南非洲农业改良和人类健康生态系统服务图
- 批准号:
NE/I004351/1 - 财政年份:2010
- 资助金额:
$ 25.36万 - 项目类别:
Research Grant
Biosynthesis of polyketide antibiotic mupirocin by Pseudomonas fluorescens
荧光假单胞菌生物合成聚酮类抗生素莫匹罗星
- 批准号:
BB/E021611/1 - 财政年份:2007
- 资助金额:
$ 25.36万 - 项目类别:
Research Grant
相似海外基金
Conference: 2024 Mammalian Synthetic Biology Workshop
会议:2024年哺乳动物合成生物学研讨会
- 批准号:
2412586 - 财政年份:2024
- 资助金额:
$ 25.36万 - 项目类别:
Standard Grant
Applying synthetic biology to the development of in vivo technologies for the monitoring and control of vector-borne diseases.
应用合成生物学来开发用于监测和控制媒介传播疾病的体内技术。
- 批准号:
BB/Y008340/1 - 财政年份:2024
- 资助金额:
$ 25.36万 - 项目类别:
Research Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 25.36万 - 项目类别:
Standard Grant
Conference: 2024 Synthetic Biology: Engineering, Evolution and Design (SEED) Conference
会议:2024年合成生物学:工程、进化和设计(SEED)会议
- 批准号:
2413726 - 财政年份:2024
- 资助金额:
$ 25.36万 - 项目类别:
Standard Grant
CAREER: Synthetic Biology to Understand and Harness Plant Enzyme Complexes for Natural Product Synthesis in Yeast
职业:合成生物学,了解和利用植物酶复合物在酵母中合成天然产物
- 批准号:
2338009 - 财政年份:2024
- 资助金额:
$ 25.36万 - 项目类别:
Continuing Grant
A synthetic biology approach to unlocking the role of the ribosome in cell competition
揭示核糖体在细胞竞争中的作用的合成生物学方法
- 批准号:
489621 - 财政年份:2023
- 资助金额:
$ 25.36万 - 项目类别:
Operating Grants
Synthetic biology approaches to construct metal analogues of vitamin B12 to act as anti-microbial and imaging agents for health applications.
利用合成生物学方法构建维生素 B12 的金属类似物,作为健康应用的抗菌剂和显像剂。
- 批准号:
2881504 - 财政年份:2023
- 资助金额:
$ 25.36万 - 项目类别:
Studentship
A UK-Japan partnership for synergising synthetic biology with systems biology.
英国-日本合作伙伴关系,旨在协同合成生物学与系统生物学。
- 批准号:
BB/X018318/1 - 财政年份:2023
- 资助金额:
$ 25.36万 - 项目类别:
Research Grant
Transition: Metabolomics-driven understanding of rules that coordinate metabolic responses and adaptive evolution of synthetic biology chassis
转变:代谢组学驱动的对协调代谢反应和合成生物学底盘适应性进化的规则的理解
- 批准号:
2320104 - 财政年份:2023
- 资助金额:
$ 25.36万 - 项目类别:
Standard Grant
Conference: 2023 Mammalian Synthetic Biology Workshop
会议:2023哺乳动物合成生物学研讨会
- 批准号:
2330030 - 财政年份:2023
- 资助金额:
$ 25.36万 - 项目类别:
Standard Grant