Cell-type-specific environmental signal integration networks controlling a binary developmental switch during the life cycle of plants

细胞类型特异性环境信号集成网络控制植物生命周期中的二元发育开关

基本信息

  • 批准号:
    BB/L010232/1
  • 负责人:
  • 金额:
    $ 48.64万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

A growing human population is placing increasing demands on agriculture, with current production needing to double by the year 2050. Compounding this challenge are the effects of climate change which are limiting the yields we have previously come to expect. The need to develop crop varieties resistant to the yield-limiting effects of environmental change is urgent. The information generated by this project will be vital to the successful development of new crop varieties with sustainably high yields across a range of environmental conditions.In order to ensure their survival and reproductive success, plants have evolved the ability to alter the timing of decisions during their life cycle in response to a wide variety of signals from their environment. Key choices during plant development include the decision to reproduce, or start flowering, and the decision to commence growth, which begins with the germination of their seeds. Both of these transitions are influenced by more than one cue from the environment, including light, temperature and nutrients. The process of signal integration describes the incorporation of multiple pieces of information into a single verdict. This amalgamation of information occurs in plants through a complex series of interactions between various molecules. This project will use seed germination as a model system to understand how diverse environmental signals are integrated into a single binary decision, to terminate dormancy and start germination. Many individual factors mediating seed responses to the environment have been uncovered previously. What is not known is how these individual components interact with one another to form a signal integration network. This proposal will fill this gap in our understanding by defining the molecular network which plants use to merge diverse environmental cues into a single decision to commence their growth. The project will as well define previously uncharacterized components of the signal integration process, and explain how information from the environment is passed onto the final molecular targets that drive the final decision.It is well known that plants use multiple pieces of information to guide their developmental transitions, yet it much less clear in which cells this decision-making process occurs. The proposal will investigate the role of a specialized sub-group of cells within the plant embryo that we have recently uncovered as a site where diverse signals are integrated into a single decision. The way the environment controls the signal integration network within each of these cells will be determined, characterizing a cellular decision-making centre in plants. The information derived from this project will represent a step change in our ability to develop crop plants with robust yields across a wide range of environmental conditions. Previous attempts to modify plant response to the environment using individual components have been met with limited success, largely due to the lack of understanding of how these isolated factors exert their influence through a complex series of interactions within molecular signal integration networks. In order to accurately and robustly modify plant response to the environment, we must first understand what these networks are, and how they function to control plant responses. This knowledge can be used to tactically perturb key interactions, rather than individual components, to achieve a desired output.Another factor limiting the success of modifying plant response to the environment is a lack of understanding of the spatial control of these processes. Distinct decisions are made within distinct sites. The ability to target modifications to interactions present within specific cells that are making key decisions will greatly enhance our ability to modify plant behaviour in response to the environment.
不断增长的人口对农业提出了越来越高的要求,目前的产量到2050年需要翻一番。加剧这一挑战的是气候变化的影响,这限制了我们以前所期望的产量。迫切需要开发能够抵抗环境变化的产量限制效应的作物品种。该项目产生的信息对于成功开发在各种环境条件下都能持续高产的新作物品种至关重要。为了确保其生存和繁殖成功,植物进化出了在其生命周期中根据来自环境的各种信号改变决策时间的能力。植物发育过程中的关键选择包括繁殖或开始开花的决定,以及开始生长的决定,这始于种子的发芽。这两种转变都受到来自环境的不止一种线索的影响,包括光线、温度和营养。信号整合的过程描述了将多条信息合并到一个判决中。这种信息的融合通过各种分子之间的一系列复杂的相互作用发生在植物中。该项目将使用种子萌发作为模型系统,以了解不同的环境信号如何整合到一个单一的二元决策中,以终止休眠并开始萌发。许多个体因素介导的种子对环境的反应已经被发现。不知道的是这些单独的组件如何相互作用以形成信号集成网络。这项提议将填补我们理解中的这一空白,通过定义植物用来将不同的环境线索合并成一个单一的决定来开始生长的分子网络。该项目还将定义信号整合过程中以前未被表征的组成部分,并解释来自环境的信息如何传递到最终的分子靶点,从而驱动最终的决定。众所周知,植物使用多条信息来指导其发育过渡,但尚不清楚这一决策过程发生在哪些细胞中。该提案将研究植物胚胎中一个专门的细胞亚群的作用,我们最近发现,这是一个将不同信号整合到一个决定中的场所。将确定环境控制这些细胞中的每个细胞内的信号整合网络的方式,表征植物中的细胞决策中心。从这个项目中获得的信息将代表我们在广泛的环境条件下开发高产作物的能力的一个步骤。以前的尝试修改植物对环境的反应,使用个别组件已经遇到了有限的成功,主要是由于缺乏了解这些孤立的因素如何发挥其影响,通过一系列复杂的相互作用的分子信号整合网络。为了准确和稳健地改变植物对环境的反应,我们必须首先了解这些网络是什么,以及它们如何控制植物的反应。这些知识可以被用来从战术上干扰关键的相互作用,而不是单个组件,以实现所需的output.Another因素限制了成功的修改植物对环境的反应是缺乏对这些过程的空间控制的理解。在不同的地点做出不同的决定。针对特定细胞内正在做出关键决定的相互作用进行修改的能力将大大提高我们修改植物行为以应对环境的能力。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MorphoGraphX: A platform for quantifying morphogenesis in 4D.
  • DOI:
    10.7554/elife.05864
  • 发表时间:
    2015-05-06
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Barbier de Reuille P;Routier-Kierzkowska AL;Kierzkowski D;Bassel GW;Schüpbach T;Tauriello G;Bajpai N;Strauss S;Weber A;Kiss A;Burian A;Hofhuis H;Sapala A;Lipowczan M;Heimlicher MB;Robinson S;Bayer EM;Basler K;Koumoutsakos P;Roeder AH;Aegerter-Wilmsen T;Nakayama N;Tsiantis M;Hay A;Kwiatkowska D;Xenarios I;Kuhlemeier C;Smith RS
  • 通讯作者:
    Smith RS
A quantitative morphospace of multicellular organ design in the plant Arabidopsis
  • DOI:
    10.1016/j.cub.2023.09.048
  • 发表时间:
    2023-11-20
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Duran-Nebreda,Salva;Jackson,Matthew D. B.;Bassel,George W.
  • 通讯作者:
    Bassel,George W.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George Bassel其他文献

George Bassel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('George Bassel', 18)}}的其他基金

Synchronization of crop seed germination
作物种子发芽同步
  • 批准号:
    BB/S002804/1
  • 财政年份:
    2019
  • 资助金额:
    $ 48.64万
  • 项目类别:
    Research Grant
Genetic and mechanical approaches to enhancing crop seed vigour
增强作物种子活力的遗传和机械方法
  • 批准号:
    BB/N009754/1
  • 财政年份:
    2016
  • 资助金额:
    $ 48.64万
  • 项目类别:
    Research Grant

相似国自然基金

铋基邻近双金属位点Type B异质结光热催化合成氨机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    30.0 万元
  • 项目类别:
    省市级项目
盐皮质激素受体抑制2型固有淋巴细胞活化加重心肌梗死后心室重构的作用机制
  • 批准号:
    82372202
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
损伤线粒体传递机制介导成纤维细胞/II型肺泡上皮细胞对话在支气管肺发育不良肺泡发育阻滞中的作用
  • 批准号:
    82371721
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
GPSM1介导Ca2+循环-II型肌球蛋白网络调控脂肪产热及代谢稳态的机制研究
  • 批准号:
    82370879
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
二型聚合函数基于扩展原理的构造与表示问题
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
真菌中I型-III型聚酮杂合类天然产物的基因组挖掘
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
智能型Type-I光敏分子构效设计及其抗耐药性感染研究
  • 批准号:
    22207024
  • 批准年份:
    2022
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
TypeⅠR-M系统在碳青霉烯耐药肺炎克雷伯菌流行中的作用机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
替加环素耐药基因 tet(A) type 1 变异体在碳青霉烯耐药肺炎克雷伯菌中的流行、进化和传播
  • 批准号:
    LY22H200001
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向手性α-氨基酰胺药物的新型不对称Ugi-type 反应开发
  • 批准号:
    LY22B020003
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Cell type specificオミックス解析によるRhoBTB2関連神経疾患の病態解明と治療法開発
通过细胞类型特异性组学分析阐明 RhoBTB2 相关神经系统疾病的发病机制和治疗开发
  • 批准号:
    24K10508
  • 财政年份:
    2024
  • 资助金额:
    $ 48.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
UC Irvine Center for the production and distribution of cell-type-specific viral targeting reagents
加州大学欧文分校细胞类型特异性病毒靶向试剂生产和分销中心
  • 批准号:
    10664193
  • 财政年份:
    2023
  • 资助金额:
    $ 48.64万
  • 项目类别:
Determining the effect of early resource scarcity on adolescent addiction-related behavior and cell-type specific transcription
确定早期资源稀缺对青少年成瘾相关行为和细胞类型特异性转录的影响
  • 批准号:
    10825012
  • 财政年份:
    2023
  • 资助金额:
    $ 48.64万
  • 项目类别:
Mechanism of Transcriptional Regulation of Th2 Cell Development
Th2细胞发育的转录调控机制
  • 批准号:
    10716014
  • 财政年份:
    2023
  • 资助金额:
    $ 48.64万
  • 项目类别:
Monitoring Immunotherapy Response via Gene Silencing Landscapes in Cell-Free DNA
通过游离 DNA 中的基因沉默景观监测免疫治疗反应
  • 批准号:
    10760450
  • 财政年份:
    2023
  • 资助金额:
    $ 48.64万
  • 项目类别:
Gene regulatory network control of olfactory cortex cell type specification
嗅觉皮层细胞类型规范的基因调控网络控制
  • 批准号:
    10656692
  • 财政年份:
    2023
  • 资助金额:
    $ 48.64万
  • 项目类别:
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
  • 批准号:
    10572539
  • 财政年份:
    2023
  • 资助金额:
    $ 48.64万
  • 项目类别:
Single-cell Transcriptomic Analysis of Cell Type Plasticity in Barrel Cortex of Normal and Autism Model Mice
正常和自闭症模型小鼠桶状皮层细胞类型可塑性的单细胞转录组分析
  • 批准号:
    10750812
  • 财政年份:
    2023
  • 资助金额:
    $ 48.64万
  • 项目类别:
Democratizing CAR T cell therapy by in situ programming of virus-specific T cells
通过病毒特异性 T 细胞的原位编程使 CAR T 细胞疗法大众化
  • 批准号:
    10739646
  • 财政年份:
    2023
  • 资助金额:
    $ 48.64万
  • 项目类别:
Molecular Control of Plasmacytoid Dendritic Cell Development and Function
浆细胞样树突状细胞发育和功能的分子控制
  • 批准号:
    10583989
  • 财政年份:
    2023
  • 资助金额:
    $ 48.64万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了