Genetic and mechanical approaches to enhancing crop seed vigour
增强作物种子活力的遗传和机械方法
基本信息
- 批准号:BB/N009754/1
- 负责人:
- 金额:$ 54.57万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Seeds are the start and end point for the vast majority of human agriculture. The annual global seed trade is currently valued at over £34 billion, and the production and sale of high quality seeds which germinate uniformly and rapidly underpin this industry. Seeds experience a range of stresses in the field prior to crop establishment. These include low water stress and mechanical impedance from compact soils. Seed vigour refers to the ability of seed to germinate and establish seedlings across a wide range of environmental conditions, and defines the success of crop establishment in the field. This is a key determinant of yield as the absence of a plant leads to no end product to harvest. Improving this trait in crops is a primary goal of the agricultural industry, however the underlying mechanisms of vigour remain poorly understood.The growth of plant cells is a mechanical process driven by internal turgor pressure pushing against the surrounding cell wall. Cells get bigger when the surrounding cell wall is weakened and yields in response to internal turgor. Genes which encode proteins that are secreted to the cell wall and modify its structural composition and strength have been identified. Once such protein is named expansin, and acts to loosen cell wall structures, permitting cell growth.The seed to seedling transition is driven exclusively through cell expansion in the absence of cell divisions. The ability to generate of mechanical force sufficient to counteract external stresses defines the ability of a seedling to establish across a wide range of environmental conditions, and hence be vigorous. Increasing the expression of expansin enables seedling establishment under stress conditions which normally limit this process. Seed vigour may therefore be considered a mechanically driven agronomic trait and the control of expansin expression a target. This project takes an interdisciplinary approach to uncover the genetic factors and mechanical basis of the seed to seedling transition, and seed vigour. We previously identified proteins which represent high confidence candidate regulators of expansin gene expression. Increasing expansin gene expression can increase seed vigour making these genetic targets to enhance seed vigour. These genes will be explored in the model plant system Arabidopsis. These findings will be extended to enhance seed vigour in the crop species Brassica oleracea. Mutations within newly characterized vigour genes will be identified in different Brassica plants. Together with industrial partner Syngenta, the vigour of these new Brassica seeds will be characterized. This will lead to the identification of varieties which can be used directly in breeding programs to enhance seedling establishment, field crop performance and yield. We have previously shown that the size, shape and arrangement of cells can influence the early stages of seed germination in response to growth-promoting gene expression, such as expansin. This observation highlighted the presence of mechanical constraints on plant growth. How these constraints affect the growth of seedlings however remains unknown. Understanding the mechanical basis of the seed to seedling transition is of central importance to understanding the establishment of crops in the field and seed vigour. Using a combination of 3D image analysis and mechanical modelling, the relationship between growth promoting gene expression and seedling growth will be established. In this way the mechanical basis of seedling establishment and seed vigour will be uncovered.Enhancing Brassica seed vigour will increase both crop yields and food security during this period of rapid climate change. The findings in this project may in turn may in turn be extended to other crop species.
种子是绝大多数人类农业的起点和终点。每年的全球种子贸易目前价值超过340亿英镑,高质量种子的生产和销售是这个行业的基础,这些种子发芽均匀、迅速。在作物形成之前,种子在田间经历了一系列的胁迫。这些包括低水应力和来自致密土壤的机械阻抗。种子活力是指种子在广泛的环境条件下发芽和成苗的能力,它决定了作物在田间的成功成苗。这是产量的一个关键决定因素,因为没有植物导致没有最终产品可以收获。改善作物的这一特性是农业工业的主要目标,然而,对活力的潜在机制仍然知之甚少。植物细胞的生长是一个由内部胀压推动周围细胞壁的机械过程。当周围的细胞壁被削弱时,细胞就会变大,并因内部膨胀而屈服。已经确定了编码分泌到细胞壁并改变其结构组成和强度的蛋白质的基因。一旦这种蛋白质被命名为扩张蛋白,它的作用是放松细胞壁结构,允许细胞生长。在没有细胞分裂的情况下,种子到幼苗的过渡完全通过细胞扩增来驱动。产生足够的机械力来抵消外部应力的能力决定了幼苗在各种环境条件下生长的能力,从而具有旺盛的生命力。增加膨胀素的表达可以使幼苗在通常限制这一过程的胁迫条件下建立。因此,种子活力可以被认为是一种机械驱动的农艺性状,而膨胀素表达的控制是一个目标。本项目采用跨学科的方法来揭示种子到幼苗转变和种子活力的遗传因素和机械基础。我们以前鉴定的蛋白质代表高可信度的候选调节膨胀蛋白基因表达。增加扩增基因的表达可以提高种子活力,使这些遗传靶点成为增强种子活力的靶点。这些基因将在拟南芥模式植物系统中进行探索。这些发现将扩展到提高作物品种甘蓝的种子活力。新鉴定的活力基因突变将在不同的芸苔属植物中鉴定。与工业合作伙伴先正达一起,这些新的芸苔种子的活力将被表征。这将导致品种的鉴定,这些品种可以直接用于育种计划,以提高幼苗的建立,田间作物的性能和产量。我们之前已经证明,细胞的大小、形状和排列可以影响种子萌发的早期阶段,以响应生长促进基因的表达,如膨胀蛋白。这一观察结果突出了植物生长受到机械约束的存在。然而,这些限制因素如何影响幼苗的生长仍然未知。了解种子到幼苗转变的机械基础,对于了解作物在田间的建立和种子的活力至关重要。利用三维图像分析和力学建模相结合的方法,建立促生长基因表达与幼苗生长之间的关系。通过这种方式,将揭示幼苗建立和种子活力的机械基础。在这个气候快速变化的时期,增强芸苔种子活力将提高作物产量和粮食安全。这个项目的发现可能反过来又可以推广到其他作物物种。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fluorescein Transport Assay to Assess Bulk Flow of Molecules Through the Hypocotyl in Arabidopsis thaliana.
荧光素转运测定法评估拟南芥下胚轴分子的整体流动。
- DOI:10.21769/bioprotoc.2791
- 发表时间:2018
- 期刊:
- 影响因子:0.8
- 作者:Duran-Nebreda S
- 通讯作者:Duran-Nebreda S
Figure S1 from Efficient vasculature investment in tissues can be determined without global information
图 S1 来自组织中的有效脉管系统投资可以在没有全局信息的情况下确定
- DOI:10.6084/m9.figshare.12085290
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Duran-Nebreda S
- 通讯作者:Duran-Nebreda S
Figure S2 from Efficient vasculature investment in tissues can be determined without global information
图 S2 来自组织中的有效脉管系统投资可以在没有全局信息的情况下确定
- DOI:10.6084/m9.figshare.12085281
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Duran-Nebreda S
- 通讯作者:Duran-Nebreda S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Bassel其他文献
George Bassel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Bassel', 18)}}的其他基金
Synchronization of crop seed germination
作物种子发芽同步
- 批准号:
BB/S002804/1 - 财政年份:2019
- 资助金额:
$ 54.57万 - 项目类别:
Research Grant
Cell-type-specific environmental signal integration networks controlling a binary developmental switch during the life cycle of plants
细胞类型特异性环境信号集成网络控制植物生命周期中的二元发育开关
- 批准号:
BB/L010232/1 - 财政年份:2014
- 资助金额:
$ 54.57万 - 项目类别:
Research Grant
相似国自然基金
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
组蛋白乙酰化修饰ATG13激活自噬在牵张应力介导骨缝Gli1+干细胞成骨中的机制研究
- 批准号:82370988
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
梯度强/超强静磁场对细胞有丝分裂纺锤体取向和形态的影响及机制研究
- 批准号:31900506
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
力学紧凑加速肝细胞三维复极性行为的作用机制
- 批准号:31100701
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
自成漆酶/介体体系应用于化学机械浆清洁漂白及树脂障碍控制的研究
- 批准号:21006034
- 批准年份:2010
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
力学环境对骨愈合初期的新生血管形成图式的影响研究
- 批准号:11072021
- 批准年份:2010
- 资助金额:45.0 万元
- 项目类别:面上项目
虹膜生物力学特性及临床应用
- 批准号:10472005
- 批准年份:2004
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Chemical Biology Approaches to Studying Collagen IV Stability
研究胶原蛋白 IV 稳定性的化学生物学方法
- 批准号:
10723042 - 财政年份:2023
- 资助金额:
$ 54.57万 - 项目类别:
NSF-BSF: Unraveling Link between Interfacial Properties and Chemo-Mechanical Performance of Na-ion Cathode Materials via Surface Modification Approaches
NSF-BSF:通过表面改性方法揭示钠离子阴极材料的界面性质和化学机械性能之间的联系
- 批准号:
2321405 - 财政年份:2023
- 资助金额:
$ 54.57万 - 项目类别:
Standard Grant
Development of Relativistic Electronic Structure Approaches for the Calculation of Structural, Mechanical and Spectroscopic Properties of Infinite Periodic Systems
开发用于计算无限周期系统的结构、力学和光谱特性的相对论电子结构方法
- 批准号:
545643-2020 - 财政年份:2022
- 资助金额:
$ 54.57万 - 项目类别:
Postdoctoral Fellowships
Machine learning to identify non-invasive mechanical testing approaches to predict skin composition, micro-structure and progression of ageing
机器学习识别非侵入性机械测试方法来预测皮肤成分、微观结构和衰老进程
- 批准号:
2750253 - 财政年份:2022
- 资助金额:
$ 54.57万 - 项目类别:
Studentship
New Bayesian statistical mechanical approaches to integrative structural biology using unassigned NMR and mass spectrometry
使用未分配的核磁共振和质谱进行综合结构生物学的新贝叶斯统计机械方法
- 批准号:
RGPIN-2022-03287 - 财政年份:2022
- 资助金额:
$ 54.57万 - 项目类别:
Discovery Grants Program - Individual
Novel mechanisms and therapeutic approaches for nasal obstruction and olfactory losses
鼻塞和嗅觉丧失的新机制和治疗方法
- 批准号:
10587159 - 财政年份:2022
- 资助金额:
$ 54.57万 - 项目类别:
Novel mechanisms and therapeutic approaches for nasal obstruction and olfactory losses
鼻塞和嗅觉丧失的新机制和治疗方法
- 批准号:
10710211 - 财政年份:2022
- 资助金额:
$ 54.57万 - 项目类别:
Data Driven Approaches to Improving Risk Prediction of Pulmonary Complications After Major Inpatient Surgery
数据驱动的方法改善重大住院手术后肺部并发症的风险预测
- 批准号:
10665631 - 财政年份:2021
- 资助金额:
$ 54.57万 - 项目类别:
Predictive Approaches and Technology Development for Identification of Susceptibility to Multiple Independent Infections in Trauma Patients
识别创伤患者多重独立感染易感性的预测方法和技术开发
- 批准号:
10455798 - 财政年份:2021
- 资助金额:
$ 54.57万 - 项目类别:
New Approaches to Mitigate Left Ventricular Injury with VA-ECMO in Acute Myocardial Infarction
VA-ECMO 减轻急性心肌梗死左心室损伤的新方法
- 批准号:
10454891 - 财政年份:2021
- 资助金额:
$ 54.57万 - 项目类别: