Engineering new capacities for solar energy utilisation in bacteria
设计细菌利用太阳能的新能力
基本信息
- 批准号:BB/M000265/1
- 负责人:
- 金额:$ 430.69万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Photosynthesis captures the power of sunlight to drive the growth of plants on land and single-celled bacteria and plankton in the oceans, underpinning all global food chains and providing the oxygen we breathe. Because our planet Earth is mostly covered in water, the quantity and activity of water based photosynthetic bacteria is stupendous; billions of tonnes of photosynthetic bacteria grow in the oceans every year. These bacteria have to compete with each other for sunlight, and have evolved to live at different depths and environments, even growing in extreme conditions 100 metres or more below the surface. Sunlight is made up of a spectrum of many different colours of light and different bacteria have evolved specialised chemicals called pigments that absorb a particular colour of the spectrum.Future biotechnological applications of photosynthesis are likely to require multicoloured bacteria containing multiple pigments that can harvest more of the solar spectrum than evolution has demanded of them. That way they could use more solar energy for making chemicals useful for man. Achieving this would mean putting together 'mix and match' combinations of pigments from different bacteria inside one cell. This is now possible because we have been finding out how photosynthetic bacteria make each type of pigment - chlorophylls, bacteriochlorophylls, bilins and carotenoids. They do it by using sets of biological machines called enzymes that work together in a production line called a biosynthetic pathway. We have found that we can create new pigment biosynthesis pathways by combining the genetic codes for enzymes from more than one type of photosynthetic bacterium. This teaches us more about how the natural enzymes and pathways work and being able to build or make something is the ultimate test of whether you understand it.The first part of this research programme will create new pathways and combinations of pigments in a photosynthetic bacterium. The second part will find out how these new pigment combinations work together to absorb new colours of light from the solar spectrum both inside the cell, and on biomimetic silicon chips. The third part starts the process of converting a bacterial cell such as E. coli, which is colourless and lives by respiring oxygen the way humans do, into a photosynthetic cell. The simple way to do this is by importing a primitive light-powered protein called proteorhodopsin from oceanic bacteria, but we will also begin the more ambitious large-scale genetic engineering of E. coli and similar bacteria so they can make bacteriochlorophyll, bilin and carotenoid pigments. Such cells will have internal solar panels that allow them to use sunlight for the first time. These light-powered cell factories have great potential for future biotechnology and bioenergy applications such as the production of, for example, alcohols, alkanes and novel pharmaceuticals.In the last part of this research programme we will take something that is already useful, in this case photosynthetic cells that make biodiesel, and use our pigment biosynthesis engineering to make them more efficient at using light to drive biodiesel production. We will go prospecting for new pigment biosynthesis genes, since we have only scratched the surface in terms of the number of pigment pathway genes out there in the oceans. New genes can be found using a machine that sees the colour of cells and plucks valuable single bacteria out of seawater so their DNA can be sequenced to look for new pigment pathways. We hope to use the genes we discover, as well as the genes we already know about, to build new bacteria that can capture and use solar energy. This knowledge is important to us all, not just because capturing and using solar energy fuels life, but it also holds the secret of using cells that one day could give us clean, unlimited energy and valuable chemicals from sunlight.
光合作用捕捉阳光的力量,推动陆地上的植物和海洋中的单细胞细菌和浮游生物的生长,支撑着所有全球食物链,并为我们提供呼吸的氧气。由于我们的星球地球大部分被水覆盖,以水为基础的光合作用细菌的数量和活动是惊人的;每年有数十亿吨光合作用细菌在海洋中生长。这些细菌必须相互竞争阳光,并进化到生活在不同的深度和环境中,甚至在地表以下100米或更深的极端条件下生长。阳光是由许多不同颜色的光组成的光谱,不同的细菌已经进化出特殊的化学物质,称为色素,可以吸收特定颜色的光谱。未来光合作用的生物技术应用可能需要含有多种色素的多色细菌,这种细菌可以获得比进化要求更多的太阳光谱。这样,他们就可以使用更多的太阳能来制造对人类有用的化学物质。要做到这一点,就意味着将来自不同细菌的色素混合在一起,并在一个细胞内进行匹配。这现在是可能的,因为我们已经发现了光合作用细菌是如何产生每种类型的色素的--叶绿素、细菌叶绿素、胆红素和类胡萝卜素。他们通过使用一组称为酶的生物机器来实现这一点,这些机器在一条名为生物合成路径的生产线上协同工作。我们已经发现,通过结合来自多种类型的光合细菌的酶的遗传密码,我们可以创造新的色素生物合成途径。这让我们了解了更多关于自然酶和途径如何工作的知识,能否建造或制造某种东西是对你是否理解它的最终考验。这项研究计划的第一部分将在光合作用细菌中创造新的途径和色素组合。第二部分将找出这些新的颜料组合如何协同工作,从电池内部和仿生硅芯片上的太阳光谱中吸收新颜色的光。第三部分开始将细菌细胞(如大肠杆菌)转化为光合作用细胞的过程。大肠杆菌是无色的,像人类一样靠呼吸氧气生存。要做到这一点,简单的方法是从海洋细菌中进口一种名为蛋白视紫质的原始光能蛋白质,但我们也将开始对大肠杆菌和类似细菌进行更雄心勃勃的大规模基因工程,以便它们能够制造细菌叶绿素、胆红素和类胡萝卜素色素。这类电池将拥有内部太阳能电池板,使它们能够首次利用阳光。这些光能电池工厂在未来的生物技术和生物能源应用方面具有巨大的潜力,例如生产醇、烷烃和新型药物。在本研究计划的最后部分,我们将采用一些已经有用的东西,在本例中是制造生物柴油的光合作用细胞,并使用我们的色素生物合成工程来使它们更有效地利用光来驱动生物柴油的生产。我们将去寻找新的色素生物合成基因,因为我们只触及了海洋中色素途径基因的数量的皮毛。使用一台机器可以发现新的基因,这种机器可以看到细胞的颜色,并从海水中提取有价值的单个细菌,以便对它们的DNA进行测序,以寻找新的色素途径。我们希望利用我们发现的基因以及我们已经知道的基因来构建能够捕获和利用太阳能的新细菌。这一知识对我们所有人都很重要,不仅因为捕捉和使用太阳能为生命提供燃料,而且还掌握了使用电池的秘密,这种电池有朝一日可以为我们提供清洁、无限的能源和来自阳光的宝贵化学物质。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Five glutamic acid residues in the C-terminal domain of the ChlD subunit play a major role in conferring Mg(2+) cooperativity upon magnesium chelatase.
ChlD 亚基 C 端结构域中的五个谷氨酸残基在赋予 Mg(2) 与镁螯合酶协同作用方面发挥着重要作用。
- DOI:10.1021/acs.biochem.5b01080
- 发表时间:2015
- 期刊:
- 影响因子:2.9
- 作者:Brindley AA
- 通讯作者:Brindley AA
Correlated fluorescence quenching and topographic mapping of Light-Harvesting Complex II within surface-assembled aggregates and lipid bilayers.
- DOI:10.1016/j.bbabio.2018.06.011
- 发表时间:2018-10
- 期刊:
- 影响因子:0
- 作者:Adams PG;Vasilev C;Hunter CN;Johnson MP
- 通讯作者:Johnson MP
Repurposing a photosynthetic antenna protein as a super-resolution microscopy label.
- DOI:10.1038/s41598-017-16834-z
- 发表时间:2017-12-01
- 期刊:
- 影响因子:4.6
- 作者:Barnett SFH;Hitchcock A;Mandal AK;Vasilev C;Yuen JM;Morby J;Brindley AA;Niedzwiedzki DM;Bryant DA;Cadby AJ;Holten D;Hunter CN
- 通讯作者:Hunter CN
Nanomechanical and Thermophoretic Analyses of the Nucleotide-Dependent Interactions between the AAA(+) Subunits of Magnesium Chelatase.
- DOI:10.1021/jacs.6b02827
- 发表时间:2016-05-25
- 期刊:
- 影响因子:15
- 作者:Adams NB;Vasilev C;Brindley AA;Hunter CN
- 通讯作者:Hunter CN
The molecular basis of phosphite and hypophosphite recognition by ABC-transporters.
- DOI:10.1038/s41467-017-01226-8
- 发表时间:2017-11-23
- 期刊:
- 影响因子:16.6
- 作者:Bisson C;Adams NBP;Stevenson B;Brindley AA;Polyviou D;Bibby TS;Baker PJ;Hunter CN;Hitchcock A
- 通讯作者:Hitchcock A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Hunter其他文献
The potential reversibility of emCutibacterium acnes/em-related disc degeneration: a rabbit model
痤疮丙酸杆菌相关椎间盘退变的潜在可逆性:兔模型
- DOI:
10.1016/j.spinee.2023.01.011 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:4.700
- 作者:
Zoe Fresquez;Ki-Eun Chang;Renata Pereira;Christopher Hunter;Matthew Myntti;Jeffrey C. Wang;Zorica Buser - 通讯作者:
Zorica Buser
Design and characterization of a research phantom for shock-wave enhanced irradiations in high intensity focused ultrasound therapy
高强度聚焦超声治疗中冲击波增强照射研究模型的设计和表征
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
W. Kreider;B. Dunmire;J. Kucewicz;Christopher Hunter;T. Khokhlova;G. Schade;A. Maxwell;O. Sapozhnikov;L. Crum;V. Khokhlova - 通讯作者:
V. Khokhlova
Bigger and better synthesis
更大更好的综合
- DOI:
10.1038/469039a - 发表时间:
2011-01-05 - 期刊:
- 影响因子:48.500
- 作者:
Christopher Hunter - 通讯作者:
Christopher Hunter
T73. MODELING GENE BY ENVIRONMENT INTERACTIONS IN POST-TRAUMATIC STRESS DISORDER USING HIPSC-DERIVED NEURONS
- DOI:
10.1016/j.euroneuro.2022.07.372 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:
- 作者:
Carina Seah;Tom Rusielewicz;Heather Bader;Changxin Xu;Hannah Young;Rebecca Signer;Agathe dePins;Christopher Hunter;PJ Michael Deans;Michael Breen;Daniel Paull;Kristen Brennand;Laura Huckins;Rachel Yehuda - 通讯作者:
Rachel Yehuda
Improving environmental and stone factors toward a more realistic in vitro lithotripsy model
改善环境和结石因素,打造更真实的体外碎石模型
- DOI:
10.1121/1.4987972 - 发表时间:
2017 - 期刊:
- 影响因子:2.4
- 作者:
Justin Ahn;W. Kreider;Christopher Hunter;T. Zwaschka;M. Bailey;Mathew D. Sorensen;J. Harper;A. Maxwell - 通讯作者:
A. Maxwell
Christopher Hunter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Hunter', 18)}}的其他基金
Controlling Membrane Translocation for Artificial Signal Transduction
控制人工信号转导的膜易位
- 批准号:
EP/R005397/1 - 财政年份:2018
- 资助金额:
$ 430.69万 - 项目类别:
Research Grant
The Non-Covalent Chemistry of Complex Systems
复杂系统的非共价化学
- 批准号:
EP/K025627/2 - 财政年份:2014
- 资助金额:
$ 430.69万 - 项目类别:
Research Grant
The Non-Covalent Chemistry of Complex Systems
复杂系统的非共价化学
- 批准号:
EP/K025627/1 - 财政年份:2013
- 资助金额:
$ 430.69万 - 项目类别:
Research Grant
The Biogenesis Structure and Function of Biological Membranes
生物膜的生物发生结构和功能
- 批准号:
BB/G021546/1 - 财政年份:2009
- 资助金额:
$ 430.69万 - 项目类别:
Research Grant
Molecular Recognition as a Probe of Solvation Phenomena
分子识别作为溶剂化现象的探针
- 批准号:
EP/F03511X/1 - 财政年份:2008
- 资助金额:
$ 430.69万 - 项目类别:
Research Grant
3-D structures of the major components of a photosynthetic membrane
光合膜主要成分的 3D 结构
- 批准号:
BB/E011683/1 - 财政年份:2007
- 资助金额:
$ 430.69万 - 项目类别:
Research Grant
Protein-protein interactions in the early stages of chlorophyll biosynthesis
叶绿素生物合成早期阶段的蛋白质-蛋白质相互作用
- 批准号:
BB/D015413/1 - 财政年份:2006
- 资助金额:
$ 430.69万 - 项目类别:
Research Grant
相似国自然基金
脊髓新鉴定SNAPR神经元相关环路介导SCS电刺激抑制恶性瘙痒
- 批准号:82371478
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
tau轻子衰变与新物理模型唯象研究
- 批准号:11005033
- 批准年份:2010
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
HIV gp41的NHR区新靶点的确证及高效干预
- 批准号:81072676
- 批准年份:2010
- 资助金额:33.0 万元
- 项目类别:面上项目
强子对撞机上新物理信号的多轻子末态研究
- 批准号:10675110
- 批准年份:2006
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
Bone marrow-targeted extracellular vesicles as a novel non-viral gene editor delivery platform
骨髓靶向细胞外囊泡作为新型非病毒基因编辑器传递平台
- 批准号:
10656545 - 财政年份:2022
- 资助金额:
$ 430.69万 - 项目类别:
High Spatial and Temporal Resolution MRI Mapping of Oxygen Consumption in Humans
人类耗氧量的高时空分辨率 MRI 绘图
- 批准号:
10490825 - 财政年份:2021
- 资助金额:
$ 430.69万 - 项目类别:
High Spatial and Temporal Resolution MRI Mapping of Oxygen Consumption in Humans
人类耗氧量的高时空分辨率 MRI 绘图
- 批准号:
10172052 - 财政年份:2021
- 资助金额:
$ 430.69万 - 项目类别:
High Spatial and Temporal Resolution MRI Mapping of Oxygen Consumption in Humans
人体耗氧量的高时空分辨率 MRI 绘图
- 批准号:
10669230 - 财政年份:2021
- 资助金额:
$ 430.69万 - 项目类别:
Repairing the Kidney Endothelium via Targeted Extracellular Matrix Modifiers
通过靶向细胞外基质修饰剂修复肾内皮
- 批准号:
10213014 - 财政年份:2020
- 资助金额:
$ 430.69万 - 项目类别:
Repairing the Kidney Endothelium via Targeted Extracellular Matrix Modifiers
通过靶向细胞外基质修饰剂修复肾内皮
- 批准号:
10454117 - 财政年份:2020
- 资助金额:
$ 430.69万 - 项目类别:
Repairing the Kidney Endothelium via Targeted Extracellular Matrix Modifiers
通过靶向细胞外基质修饰剂修复肾内皮
- 批准号:
10205482 - 财政年份:2020
- 资助金额:
$ 430.69万 - 项目类别:
Development of Helper Dependent Adenoviral Vectors for Inner Ear Gene Therapy Approaches
用于内耳基因治疗方法的辅助依赖性腺病毒载体的开发
- 批准号:
9981782 - 财政年份:2019
- 资助金额:
$ 430.69万 - 项目类别:
Optical Mapping of Cardiac Electromechanics in the In Vivo Setting
体内心脏机电的光学测绘
- 批准号:
9912834 - 财政年份:2019
- 资助金额:
$ 430.69万 - 项目类别:
Repairing the Kidney Endothelium via Targeted Extracellular Matrix Modifiers
通过靶向细胞外基质修饰剂修复肾内皮
- 批准号:
9449094 - 财政年份:2018
- 资助金额:
$ 430.69万 - 项目类别: