Repairing the Kidney Endothelium via Targeted Extracellular Matrix Modifiers

通过靶向细胞外基质修饰剂修复肾内皮

基本信息

  • 批准号:
    10454117
  • 负责人:
  • 金额:
    $ 30.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY The renal microvasculature is the convergence point for inflammatory disorders and hypoxic injury that cause endothelial dysregulation and deterioration of the underlying extracellular matrix (ECM). Together, these changes lead to progressive kidney dysfunction and ultimately failure. The regulatory role of the microvasculature in general—and in particular the microvasculature of the kidney—extends beyond its blood carrying capacity, with global implications to total-body homeostasis. Despite development of animal models of renal vascular dysfunction, which are important components of scientific research, translation of therapeutic tools and knowledge from animals to humans is limited by inconsistent linkages between transgenic models of disease and human vascular physiology. New scientific understanding of the renal vasculature microenvironment, its ECM composition, and the interdependency of endothelial cells within it provide information to develop ex vivo models of renal microvasculature. However, bioengineered systems oftentimes oversimplify the complex, interdependent nature of renal endothelial biology and the necessary cross-talk with pericytes and stroma within the microenvironment. Despite new advances in photolithography and additive manufacturing, the tiny length scales typically found within the in vivo microvasculature cannot be replicated and thus fail to adequately recapitulate the renal microenvironment ex vivo. To address this deficiency, our multidisciplinary team developed a bio-replicative renal microvasculature that mimics the scale, ECM make-up and fluid mechanics of the normal kidney. The foundation for the scientific investigation is this vascularized scaffolding system that is supported by our published data demonstrating patent and perfusable arterial and venous circulation (Caralt et al., Am J Transplant, 2015) with strict control of hydrodynamics (Uzarski, et al., Tissue Eng Part C Methods, 2015) that together result in a bio-replicative ‘test rig’. This platform provides unique opportunities to manipulate the ECM microenvironment with new technologies that unlock cellular function. To enable such an investigation, we developed Targetable ECM Modifiers (TEMs), a new biomaterial delivery system based upon our preliminary and published data (Jiang, et al. Biomacromolecules, 2016) demonstrating ability to discriminately target and shuttle bioactive agents to specific ECM sub-components. Our hypothesis is that endothelial repair leading to vascular restoration can be controlled by delivering bioactive materials to the matrix with specificity to influence endothelial cells at ECM interfaces. Our investigation is supported by data showing a 7-fold enrichment of growth factors within ECM scaffolds accessed by TEMs, compared to soluble factors delivered free in solution, leading to maintenance of an ex vivo vascular endothelium for 28 days where none developed in its absence. This investigation is further enabled by a multidisciplinary team of collaborators in bioengineering, nanotechnology, peptide chemistry and nephrology to tailor the ex vivo renal vasculature with a panel of TEMs to develop testing platforms to study disease and therapies to repair renal vascular injury and reverse kidney disease.
项目摘要 肾脏微血管是炎症性疾病和缺氧性损伤的交汇点, 内皮失调和潜在的细胞外基质(ECM)恶化。所有这些 这些变化导致进行性肾功能障碍并最终衰竭。微血管的调节作用 一般来说--尤其是肾脏的微血管系统--超出了其血液承载能力, 对全身内环境稳定有着全球性的影响。尽管发展了肾血管病变的动物模型, 功能障碍,这是科学研究的重要组成部分,治疗工具的翻译, 从动物到人类的知识受到疾病转基因模型之间不一致联系的限制 和人体血管生理学。对肾血管微环境的新的科学认识, ECM组成和其中内皮细胞的相互依赖性提供了离体开发的信息。 肾脏微血管模型。然而,生物工程系统往往过于简化复杂, 肾内皮生物学的相互依赖性以及与周细胞和基质的必要串扰 微环境。尽管在光刻和增材制造方面取得了新的进展, 体内微脉管系统内通常存在的鳞片不能被复制 在体外重现肾微环境。为了解决这个问题,我们的多学科团队开发了 一种生物复制的肾脏微血管系统,模拟正常肾脏的规模、ECM组成和流体力学。 肾科学研究的基础是这个血管化的支架系统, 我们公开的数据证明了通畅的和可灌注的动脉和静脉循环(Caralt等人,Am J Transplant,2015),并严格控制流体动力学(Uzarski等人,组织工程C部分方法,2015), 一起形成生物复制的“试验台”。该平台提供了操纵ECM的独特机会 微环境与新技术,解锁细胞功能。为了进行这样的调查,我们 开发了靶向ECM修饰剂(TEM),一种新的生物材料输送系统,基于我们初步的 和已发表的数据(Jiang等人,Biomacromolecules,2016)证明了有区别地靶向和 将生物活性剂穿梭于特定ECM亚组分。我们的假设是内皮修复导致 血管修复可以通过将生物活性材料递送到基质中来控制 ECM界面处的内皮细胞。我们的调查得到了数据的支持,显示了7倍的增长富集 与溶液中游离递送的可溶性因子相比, 维持离体血管内皮28天,其中在其不存在时没有血管内皮发育。这 由生物工程,纳米技术, 肽化学和肾脏病学,以定制离体肾血管系统,并使用一组TEM来开发测试 研究疾病和治疗的平台,以修复肾血管损伤和逆转肾脏疾病。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JASON A WERTHEIM其他文献

JASON A WERTHEIM的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JASON A WERTHEIM', 18)}}的其他基金

Repairing the Kidney Endothelium via Targeted Extracellular Matrix Modifiers
通过靶向细胞外基质修饰剂修复肾内皮
  • 批准号:
    10213014
  • 财政年份:
    2020
  • 资助金额:
    $ 30.7万
  • 项目类别:
Repairing the Kidney Endothelium via Targeted Extracellular Matrix Modifiers
通过靶向细胞外基质修饰剂修复肾内皮
  • 批准号:
    10205482
  • 财政年份:
    2020
  • 资助金额:
    $ 30.7万
  • 项目类别:
ShEEP Request for Enabling 3D Nano-Printer Technology
ShEEP 请求启用 3D 纳米打印机技术
  • 批准号:
    10179144
  • 财政年份:
    2020
  • 资助金额:
    $ 30.7万
  • 项目类别:
Repairing the Kidney Endothelium via Targeted Extracellular Matrix Modifiers
通过靶向细胞外基质修饰剂修复肾内皮
  • 批准号:
    9449094
  • 财政年份:
    2018
  • 资助金额:
    $ 30.7万
  • 项目类别:
Extracellular Matrix Induction of Renal Stem and Progenitor Cell Development
肾干细胞和祖细胞发育的细胞外基质诱导
  • 批准号:
    10200365
  • 财政年份:
    2016
  • 资助金额:
    $ 30.7万
  • 项目类别:
Optimization and control of hepatocyte activity via biofunctional modification
通过生物功能修饰优化和控制肝细胞活性
  • 批准号:
    9246530
  • 财政年份:
    2014
  • 资助金额:
    $ 30.7万
  • 项目类别:
Optimization and control of hepatocyte activity via biofunctional modification
通过生物功能修饰优化和控制肝细胞活性
  • 批准号:
    8679763
  • 财政年份:
    2014
  • 资助金额:
    $ 30.7万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 30.7万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 30.7万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了