Choreography of eukaryotic chromosome replication
真核染色体复制的编排
基本信息
- 批准号:BB/M002314/1
- 负责人:
- 金额:$ 43.94万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The human body contains over a thousand billion different cells, each created by cell division, that productively interact to make the tissues and organs of the human body. All complex animals and plants are made of numbers of different cell types whereas simpler forms of life, such as bacteria and yeast, comprise single cells. All cell types including bacteria, yeast and human cells use the same basic mechanisms to replicate themselves to generate more cells. Perhaps the most important component of each cell is its DNA, which contains the blueprint to make the cell (for example a brain cell, blood cell, or yeast cell). For this reason, the mechanisms used to replicate cellular DNA are among the most important aspects of cell biology. It is important that DNA is replicated properly each time because mistakes (mutations) can change the properties of the cell making the cell misbehave, for example in cancer, or cause the cell (and organism) to die. Many machines interact to replicate DNA and the interactions need to be carefully controlled and coordinated in order that DNA is replicated properly. The machines that replicate DNA are perhaps analogous to those that individual multi-component parts of a car, such as engine, gears, clutch, brake, accelerator and steering wheel. In a car all these complex sub-components interact and coordinate to make the car drive as required. If individual parts of a car fail, or coordination fails (for example between clutch and accelerator) the car will most likely not work. The human genome is 3 billion base pairs and each cell in the body contains this number of bases. A single mistake in copying any of the three billion bases has the potential to be harmful, perhaps most recognisably if the single mistake contributes to causing cancer. However, given the magnitude of the task of replicating the entire cellular DNA content, it is inevitable that mistakes are made. Therefore to help replicate DNA with highest fidelity possible cells have evolved numerous mechanisms to check for errors. When errors are detected a number of mechanisms can slow, stop or reverse replication while errors are corrected. We have used simple yeast cells, a powerful model genetic system, to investigate how DNA replication is coordinated. These yeast cells are also the type that mankind has cultivated for thousands of years to make bread, wine and beer. We have engineered these cells and reduced the ability of the cells to replicate their DNA and then screened to identify the pathways and processes that respond to these defects. It is likely that similar defects are important during human ageing processes or can be induced in nature by drugs such as antibiotics or antifungals.Our experiments on yeast cells with defective DNA replication have allowed us to identify mechanisms that help cells cope with failures in DNA replication. We identified a number of interesting interactions that give insight into how the machinery of replication is regulated. We will now use powerful molecular and cellular biology methods to understand the molecular and biochemical basis of interactions we have identified.
人体包含超过1000亿个不同的细胞,每个细胞都是由细胞分裂产生的,它们相互作用,产生人体的组织和器官。所有复杂的动物和植物都是由许多不同类型的细胞组成的,而简单的生命形式,如细菌和酵母,则由单细胞组成。包括细菌、酵母和人类细胞在内的所有细胞类型都使用相同的基本机制来复制自己以产生更多的细胞。也许每个细胞最重要的组成部分是它的DNA,它包含了制造细胞的蓝图(例如脑细胞,血细胞或酵母细胞)。因此,用于复制细胞DNA的机制是细胞生物学中最重要的方面之一。重要的是,DNA每次都能正确复制,因为错误(突变)会改变细胞的特性,使细胞行为不端,例如在癌症中,或导致细胞(和生物体)死亡。许多机器相互作用以复制DNA,需要仔细控制和协调这些相互作用,以便正确复制DNA。复制DNA的机器可能类似于那些独立的汽车多组件部件,如发动机,齿轮,离合器,刹车,加速器和方向盘。在汽车中,所有这些复杂的子组件相互作用和协调,使汽车按要求行驶。如果汽车的个别部件出现故障,或者协调失败(例如离合器和加速器之间),汽车很可能无法工作。人类基因组有30亿个碱基对,人体内的每个细胞都含有这个数量的碱基。复制30亿个碱基中的任何一个错误都有可能是有害的,也许最容易识别的是,如果这个错误导致癌症。然而,考虑到复制整个细胞DNA内容的任务的艰巨性,犯错误是不可避免的。因此,为了帮助以最高的保真度复制DNA,可能的细胞已经进化出许多机制来检查错误。当检测到错误时,许多机制可以在纠正错误的同时减慢、停止或逆转复制。我们使用简单的酵母细胞,一个强大的模型遗传系统,来研究DNA复制是如何协调的。这些酵母细胞也是人类培养了数千年来制造面包,葡萄酒和啤酒的类型。我们对这些细胞进行了工程改造,降低了细胞复制DNA的能力,然后进行筛选,以确定对这些缺陷做出反应的途径和过程。类似的缺陷很可能在人类衰老过程中很重要,或者可以在自然界中由抗生素或抗真菌药等药物诱导。我们对DNA复制缺陷的酵母细胞进行的实验使我们能够确定帮助细胞科普DNA复制失败的机制。我们确定了一些有趣的相互作用,使深入了解如何复制机制的监管。我们现在将使用强大的分子和细胞生物学方法来了解我们已经确定的相互作用的分子和生物化学基础。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast Bayesian parameter estimation for stochastic logistic growth models.
- DOI:10.1016/j.biosystems.2014.05.002
- 发表时间:2014-08
- 期刊:
- 影响因子:1.6
- 作者:Heydari, Jonathan;Lawless, Conor;Lydall, David A.;Wilkinson, Darren J.
- 通讯作者:Wilkinson, Darren J.
Bayesian hierarchical modelling for inferring genetic interactions in yeast.
- DOI:10.1111/rssc.12126
- 发表时间:2016-04
- 期刊:
- 影响因子:0
- 作者:Heydari J;Lawless C;Lydall DA;Wilkinson DJ
- 通讯作者:Wilkinson DJ
The contribution of non-essential Schizosaccharomyces pombe genes to fitness in response to altered nutrient supply and target of rapamycin activity.
- DOI:10.1098/rsob.180015
- 发表时间:2018-05
- 期刊:
- 影响因子:5.8
- 作者:Lie S;Banks P;Lawless C;Lydall D;Petersen J
- 通讯作者:Petersen J
A Critical Role for Dna2 at Unwound Telomeres.
- DOI:10.1534/genetics.118.300809
- 发表时间:2018-05
- 期刊:
- 影响因子:3.3
- 作者:Markiewicz-Potoczny M;Lisby M;Lydall D
- 通讯作者:Lydall D
Systematic analysis of the effects of the DNA damage response network in telomere defective budding yeast
端粒缺陷芽殖酵母 DNA 损伤反应网络影响的系统分析
- DOI:10.1101/101253
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Holstein E
- 通讯作者:Holstein E
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Lydall其他文献
Mrc1 protects uncapped budding yeast telomeres from exonuclease <em>EXO1</em>
- DOI:
10.1016/j.dnarep.2007.05.010 - 发表时间:
2007-11-01 - 期刊:
- 影响因子:
- 作者:
Avgi Tsolou;David Lydall - 通讯作者:
David Lydall
Similarities and differences between “uncapped” telomeres and DNA double-strand breaks
- DOI:
10.1007/s00412-011-0357-2 - 发表时间:
2011-12-28 - 期刊:
- 影响因子:2.300
- 作者:
James M. Dewar;David Lydall - 通讯作者:
David Lydall
David Lydall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Lydall', 18)}}的其他基金
Functional dissection of the genetic interaction network that affects growth of cells with telomere defects: implications for health and disease
影响端粒缺陷细胞生长的遗传相互作用网络的功能剖析:对健康和疾病的影响
- 批准号:
MR/L001284/1 - 财政年份:2013
- 资助金额:
$ 43.94万 - 项目类别:
Research Grant
相似国自然基金
白质消融性白质脑病中胶质细胞选择性受累的机制研究
- 批准号:30872793
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
白质消融性白质脑病致病基因EIF2B5的突变功能研究
- 批准号:30772355
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Genetic Dissection of Stress Responses in Shwachman-Diamond Syndrome
什瓦赫曼-戴蒙德综合征应激反应的基因剖析
- 批准号:
10594366 - 财政年份:2023
- 资助金额:
$ 43.94万 - 项目类别:
CSHL 2023 Eukaryotic DNA Replication and Genome Maintenance Conference
CSHL 2023真核DNA复制与基因组维护会议
- 批准号:
10677192 - 财政年份:2023
- 资助金额:
$ 43.94万 - 项目类别:
Understanding CDK1 Function and Cancer Vulnerabilities
了解 CDK1 功能和癌症脆弱性
- 批准号:
10736617 - 财政年份:2023
- 资助金额:
$ 43.94万 - 项目类别:
SIM2 Regulation of Mitochondrial Dysfunction in Down Syndrome
SIM2 对唐氏综合症线粒体功能障碍的调节
- 批准号:
10654384 - 财政年份:2023
- 资助金额:
$ 43.94万 - 项目类别:
Molecular and cellular basis for autism spectrum disorders caused by exacerbated translation
加剧翻译引起的自闭症谱系障碍的分子和细胞基础
- 批准号:
10697387 - 财政年份:2022
- 资助金额:
$ 43.94万 - 项目类别:
Effects of Chromosomal Topology and Organization on E. coli Gene Expression
染色体拓扑和组织对大肠杆菌基因表达的影响
- 批准号:
10744700 - 财政年份:2022
- 资助金额:
$ 43.94万 - 项目类别:
Molecular and cellular basis for autism spectrum disorders caused by exacerbated translation
加剧翻译引起的自闭症谱系障碍的分子和细胞基础
- 批准号:
10704718 - 财政年份:2022
- 资助金额:
$ 43.94万 - 项目类别:
Molecular mechanisms of pathway choice in DNA double strand break repair
DNA双链断裂修复途径选择的分子机制
- 批准号:
10646302 - 财政年份:2022
- 资助金额:
$ 43.94万 - 项目类别:
Chromosome structure, duplication and stability in yeast
酵母中的染色体结构、复制和稳定性
- 批准号:
10202018 - 财政年份:2021
- 资助金额:
$ 43.94万 - 项目类别: