Development and function of the zebrafish vestibular system across the life course
斑马鱼前庭系统整个生命过程的发育和功能
基本信息
- 批准号:BB/M01021X/1
- 负责人:
- 金额:$ 92.45万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The inner ear is the sensory organ that detects sound, gravity and motion, enabling us to hear and to balance correctly. Within the ear, sensory hair cells detect gravity together with body movement in all directions. This sensory information is relayed, via the brain, to muscular reflexes to enable an organism to maintain balance.The inner ear is rightly also called the labyrinth. The vestibular (balance) part of the ear consists of three smoothly curved tubes-the semicircular canal ducts-together with several interlinked sensory chambers, which house the sensory cells of the ear. The whole organ is one continuous fluid-filled cavity. This beautiful and intricate structure is essentially similar in all vertebrate organisms, from the fish (which we use here as a model system) through to humans. The inner ear develops in the embryo from a simple ball of cells, and the cell and tissue rearrangements that convert this rudimentary structure into the complex labyrinth of the mature ear are truly remarkable. Sheets of cells must grow, bend, fuse and rearrange. Different cells take on widely differing sizes and shapes to achieve this. These events must be tightly controlled to ensure that the correct cell types and tissue shapes are produced in the right place and at the right time. Our primary aim in this proposal is to use cutting-edge imaging technology to describe and understand these cellular rearrangements. We use the zebrafish as our model system, as it is beautifully suited to this imaging approach. The zebrafish embryo is optically clear, meaning that we can see internal organs in the live animal under the microscope, without any need for dissection. Secondly, we can label cells with fluorescent proteins, lighting up different structures as they develop. By using specialised microscopes, we can measure dynamic changes in cell shapes and tissue movements as the whole organ develops in the live embryo. We will undertake these studies across the life course of the fish, including events during embryogenesis, metamorphosis and adulthood.A major goal of the project is to develop and forge new links with engineers, who will use our imaging data to develop computer models of how cells change shape, move, fuse and rearrange to form the elaborate structures of the ear.We also wish to understand the genetic factors that control ear development during embryogenesis. In our previous work, we have identified a number of genes that are critical for development of the semicircular canal system. A number of our fish strains carry specific genetic mutations in these genes: we will use these mutant fish in the imaging and computer modelling experiments described above, to gain new insights into how gene function affects cell movement, cell division and cell shape as the inner ear develops.A final aim is to correlate our imaging data with vestibular behaviour in our fish. Several of our genetic strains develop with anatomical defects in the semicircular canal system, and have mild balance defects. We will use these fish to understand the contribution of the ear to balance function, using automated tracking of swimming behaviour. This will give us new insights into the function of the balance system of the ear, and its relative importance compared with visual and other functions.Research on the vestibular (balance) system is hugely under-represented compared with that on the auditory (hearing) part of the ear, despite the fact that vestibular disorders are common and cause significant clinical problems, especially in the elderly. This project will help to redress that discrepancy and will contribute to the knowledge base that underpins our understanding of the human inner ear in both health and disease. We also aim to uncover fundamental developmental principles that will improve our understanding of how organ systems are built from sheets of cells in the developing embryo.
内耳是感知声音、重力和运动的感觉器官,使我们能够听到并保持正确的平衡。在耳内,感觉毛细胞能感知重力和身体各个方向的运动。这种感觉信息通过大脑传递给肌肉反射,使生物体保持平衡。内耳也被正确地称为迷宫。耳朵的前庭(平衡)部分由三个光滑弯曲的管(半圆形管)和几个相互连接的感觉室组成,这些感觉室容纳了耳朵的感觉细胞。整个器官是一个连续的充满液体的腔。这种美丽而复杂的结构在所有脊椎动物有机体中都是相似的,从鱼(我们在这里用它作为模型系统)到人类。内耳在胚胎时期从一个简单的细胞球发育而来,细胞和组织的重新排列将这个基本结构转变为成熟耳的复杂迷宫,这确实是非常了不起的。细胞片必须生长、弯曲、融合和重新排列。不同的细胞采用不同的大小和形状来实现这一目标。这些事件必须严格控制,以确保正确的细胞类型和组织形状在正确的地方和正确的时间产生。我们的主要目的是利用尖端的成像技术来描述和理解这些细胞重排。我们使用斑马鱼作为我们的模型系统,因为它非常适合这种成像方法。斑马鱼胚胎在光学上是清晰的,这意味着我们可以在显微镜下看到活体动物的内部器官,而无需解剖。其次,我们可以用荧光蛋白标记细胞,在细胞发育过程中点亮不同的结构。通过使用专门的显微镜,我们可以测量整个器官在活胚胎中发育过程中细胞形状和组织运动的动态变化。我们将在鱼的整个生命过程中进行这些研究,包括胚胎发生、变态和成年期间的事件。该项目的一个主要目标是发展和建立与工程师的新联系,他们将使用我们的成像数据来开发细胞如何改变形状,移动,融合和重新排列以形成耳朵的复杂结构的计算机模型。我们还希望了解在胚胎发生过程中控制耳朵发育的遗传因素。在我们之前的工作中,我们已经确定了一些对半管管系统发育至关重要的基因。我们的一些鱼类菌株在这些基因中携带特定的基因突变:我们将在上述的成像和计算机建模实验中使用这些突变鱼,以获得基因功能如何影响内耳发育过程中细胞运动、细胞分裂和细胞形状的新见解。最后的目标是将我们的成像数据与鱼的前庭行为联系起来。我们的一些遗传菌株发展与半圆形管系统的解剖缺陷,并有轻微的平衡缺陷。我们将使用这些鱼来了解耳朵对平衡功能的贡献,使用自动跟踪游泳行为。这将使我们对耳朵平衡系统的功能及其相对于视觉和其他功能的重要性有新的认识。前庭(平衡)系统的研究远远少于对耳朵听觉部分的研究,尽管前庭疾病是常见的,并引起重大的临床问题,特别是在老年人中。这个项目将有助于纠正这种差异,并将有助于建立知识库,巩固我们对人类内耳健康和疾病的理解。我们还致力于揭示基本的发育原理,这将提高我们对器官系统是如何从发育中的胚胎中的细胞片中构建起来的理解。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Presence of chondroitin sulphate and requirement for heparan sulphate biosynthesis in the developing zebrafish inner ear.
- DOI:10.3389/fcell.2022.959624
- 发表时间:2022
- 期刊:
- 影响因子:5.5
- 作者:
- 通讯作者:
Origami: Single-cell 3D shape dynamics oriented along the apico-basal axis of folding epithelia from fluorescence microscopy data.
- DOI:10.1371/journal.pcbi.1009063
- 发表时间:2021-11
- 期刊:
- 影响因子:4.3
- 作者:Mendonca T;Jones AA;Pozo JM;Baxendale S;Whitfield TT;Frangi AF
- 通讯作者:Frangi AF
Enhancer trap lines with GFP driven by smad6b and frizzled1 regulatory sequences for the study of epithelial morphogenesis in the developing zebrafish inner ear.
- DOI:10.1111/joa.13845
- 发表时间:2023-07
- 期刊:
- 影响因子:2.4
- 作者:
- 通讯作者:
Anteroposterior patterning of the zebrafish ear through Fgf- and Hh-dependent regulation of hmx3a expression
- DOI:10.1371/journal.pgen.1008051
- 发表时间:2019-04-01
- 期刊:
- 影响因子:4.5
- 作者:Hartwell, Ryan D.;England, Samantha J.;Whitfield, Tanya T.
- 通讯作者:Whitfield, Tanya T.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tanya Whitfield其他文献
03-P076 Development of semicircular canals in the zebrafish inner ear
- DOI:
10.1016/j.mod.2009.06.129 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:
- 作者:
Fansuo Geng;Leila Abbas;Tanya Whitfield - 通讯作者:
Tanya Whitfield
09-P020 Nkcc1/Slc12a2 is required for the regulation of endolymph in the otic vesicle and volume of the swim bladder in the zebrafish larva
- DOI:
10.1016/j.mod.2009.06.350 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:
- 作者:
Leila Abbas;Tanya Whitfield - 通讯作者:
Tanya Whitfield
09-P016 Repression of Hedgehog signalling is required for the acquisition of dorsolateral cell fates in the zebrafish otic vesicle
- DOI:
10.1016/j.mod.2009.06.346 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:
- 作者:
Katherine Hammond;Fredericus van Eeden;Tanya Whitfield - 通讯作者:
Tanya Whitfield
Tanya Whitfield的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tanya Whitfield', 18)}}的其他基金
Integration of BMP and Wnt signalling in the developing zebrafish ear
发育中的斑马鱼耳朵中 BMP 和 Wnt 信号的整合
- 批准号:
BB/S007008/1 - 财政年份:2019
- 资助金额:
$ 92.45万 - 项目类别:
Research Grant
A multi-user light-sheet microscope for Bateson Centre researchers, University of Sheffield scientists, partners and collaborators
为贝特森中心研究人员、谢菲尔德大学科学家、合作伙伴和合作者提供的多用户光片显微镜
- 批准号:
BB/M012522/1 - 财政年份:2015
- 资助金额:
$ 92.45万 - 项目类别:
Research Grant
The mechanism of GPCR signalling in zebrafish semicircular canal morphogenesis
GPCR信号在斑马鱼半规管形态发生中的作用机制
- 批准号:
BB/J003050/1 - 财政年份:2011
- 资助金额:
$ 92.45万 - 项目类别:
Research Grant
Axial patterning in the vertebrate inner ear: the role of Hedgehog signalling
脊椎动物内耳的轴向模式:刺猬信号传导的作用
- 批准号:
BB/E015875/1 - 财政年份:2007
- 资助金额:
$ 92.45万 - 项目类别:
Research Grant
相似国自然基金
CBP/p300-HADH轴在基础胰岛素分泌调节中的作用和机制研究
- 批准号:82370798
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
PRNP调控巨噬细胞M2极化并减弱吞噬功能促进子宫内膜异位症进展的机制研究
- 批准号:82371651
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
- 批准号:82371616
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
基于再生运动神经路径优化Agrin作用促进损伤神经靶向投射的功能研究
- 批准号:82371373
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Idh3a作为线粒体代谢—表观遗传检查点调控产热脂肪功能的机制研究
- 批准号:82370851
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
PROCR信号通路介导的血管新生在卵巢组织移植中的作用及机制研究
- 批准号:82371726
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
GASP-1通过Myostatin信号通路调控颏舌肌功能的作用及机制研究
- 批准号:82371131
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
G蛋白偶联受体GPR110调控Lp-PLA2抑制非酒精性脂肪性肝炎的作用及机制研究
- 批准号:82370865
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
双硫仑结合并抑制谷氨酸脱氢酶1活性调节Th17/Treg细胞平衡的作用与机制探究
- 批准号:82371755
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
犬尿氨酸酶KYNU参与非酒精性脂肪肝进展为肝纤维化的作用和机制研究
- 批准号:82370874
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Establishing the roles of oestrogen receptor 1 (ESR1) in olfactory development and function using novel CRISPR/Cas9-based knockouts in the zebrafish
使用基于 CRISPR/Cas9 的新型斑马鱼基因敲除技术确定雌激素受体 1 (ESR1) 在嗅觉发育和功能中的作用
- 批准号:
BB/Y00003X/1 - 财政年份:2024
- 资助金额:
$ 92.45万 - 项目类别:
Research Grant
Deciphering neural crest-specific TFAP2 pathways in midface development and dysplasia
解读中面部发育和发育不良中神经嵴特异性 TFAP2 通路
- 批准号:
10676016 - 财政年份:2023
- 资助金额:
$ 92.45万 - 项目类别:
Uncovering the role of inppl1a in notochord vacuolation and the development of a straight body axis.
揭示 inppl1a 在脊索空泡化和直体轴发育中的作用。
- 批准号:
10826125 - 财政年份:2023
- 资助金额:
$ 92.45万 - 项目类别:
Investigating the role of cannabinoid receptors in oligodendrocyte development
研究大麻素受体在少突胶质细胞发育中的作用
- 批准号:
10605105 - 财政年份:2023
- 资助金额:
$ 92.45万 - 项目类别:
Investigating mechanisms of tissue polarity during development and disease
研究发育和疾病过程中组织极性的机制
- 批准号:
10751262 - 财政年份:2023
- 资助金额:
$ 92.45万 - 项目类别:
Function of an antagonistic Gata5/Tbx1 regulatory loop in establishing the epigenetic framework for cardiopharyngeal development
拮抗性 Gata5/Tbx1 调节环在建立心咽发育表观遗传框架中的作用
- 批准号:
494999 - 财政年份:2023
- 资助金额:
$ 92.45万 - 项目类别:
Operating Grants
Opening small packages: unraveling roles for microproteins during early vertebrate development
打开小包装:揭示微生物蛋白在早期脊椎动物发育过程中的作用
- 批准号:
10678492 - 财政年份:2023
- 资助金额:
$ 92.45万 - 项目类别:
Mechanisms regulating Meningeal Development and Function
调节脑膜发育和功能的机制
- 批准号:
10763476 - 财政年份:2023
- 资助金额:
$ 92.45万 - 项目类别:
The Role of Macrophages in Hepatobiliary Development
巨噬细胞在肝胆发育中的作用
- 批准号:
10680846 - 财政年份:2023
- 资助金额:
$ 92.45万 - 项目类别:
Investigating the Molecular Mechanisms that Drive Electrical Synapse Development
研究驱动电突触发育的分子机制
- 批准号:
10679980 - 财政年份:2023
- 资助金额:
$ 92.45万 - 项目类别: