An effector-detector domain in a rice immune receptor: towards structure-guided design of new disease resistance proteins.

水稻免疫受体中的效应器-检测器结构域:面向新抗病蛋白的结构指导设计。

基本信息

  • 批准号:
    BB/M02198X/1
  • 负责人:
  • 金额:
    $ 53.6万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Every growing season, significant losses are realised to many of the world's most important crop harvests because of diseases caused by pathogenic micro-organisms, such as fungi, oomycetes and bacteria. This is against the backdrop of increasing demand for food, which continues to rise as the world's population grows and there are changes in diets. Many scientific resources, from traditional plant breeding to chemical control (e.g. fungicides/pesticides), are available to help limit the impact of pathogens on crop yield. However, many of these approaches may have only short-term effects or are environmentally unsustainable. New ways to control plant diseases are required. One way to develop novel control strategies is by understanding the intricate mechanisms of how pathogens cause disease or evade detection by the plant immune system. By understanding these processes we can develop ways to engineer plants to help them fight infection.One mechanism used by plants to fight infection is to detect pathogen agents that are attempting alter plant cells for the benefit of the pathogen. These agents, known as "effectors", give away the presence of the pathogen and plants have evolved to sense these. This triggers a response by the plant that helps stop the infection spreading. The plant sensors can work by directly contacting the effectors, like a handshake, but the important details of how this actually occurs are not known. The plant has to be very precise about knowing if a pathogen molecule is present, and all it may have to go on is the shape of the "hand" (imagine trying to identify one person in a room of 10,000 only by the shape of their hand). The plant cell will induce death of the cell if it senses the effectors, so it has to get it right. We have been studying the interactions of a set of pathogen effectors from a microorganism (fungus) that produces a devastating disease of rice, a major food crop that many people rely on for calories. We have been able to define the nature of the "handshake" between one of these effectors and a plant sensing protein. This is just a snapshot of the interaction, and we need to understand its implications using biochemistry and biological studies in plants. To do this we will use a number of experimental approaches. Firstly, we will define how strong the handshake is between the pathogen effector and plant sensor. Secondly, we will make small changes to the shape of the molecules and see how this affects the strength of the handshake. We will then investigate some small changes that have happened in these pathogen and plant molecules during evolution in nature, using the picture of the handshake we have determined to help us. We also wish to understand why the pathogen is producing the molecules it does, and we will ask questions about what these molecules are doing. Finally, after we understand the interactions formed by the various handshakes in this system, we will engineer a plant sensor protein that can recognise more than one pathogen molecule - which could give the plant a better chance of fighting off infection. We will also see if we can get this to work in a plant other than rice, to see if our new knowledge can help other crops recognise their pathogens.
每个生长季节,由于病原微生物(如真菌、卵菌和细菌)引起的疾病,世界上许多最重要的作物收成都会遭受重大损失。这是在粮食需求不断增加的背景下发生的,随着世界人口的增长和饮食的变化,粮食需求继续增加。从传统的植物育种到化学控制(例如杀真菌剂/杀虫剂),许多科学资源都可以帮助限制病原体对作物产量的影响。然而,其中许多办法可能只有短期效果,或者在环境上是不可持续的。需要新的方法来控制植物病害。开发新的控制策略的一种方法是了解病原体如何引起疾病或逃避植物免疫系统检测的复杂机制。通过了解这些过程,我们可以开发出一些方法来改造植物,帮助它们抵抗感染。植物抵抗感染的一种机制是检测病原体,这些病原体试图改变植物细胞以使病原体受益。这些被称为“效应物”的物质暴露了病原体的存在,植物已经进化到可以感知这些物质。这引发了植物的反应,有助于阻止感染传播。植物传感器可以通过直接接触效应器来工作,就像握手一样,但这实际上是如何发生的重要细节尚不清楚。植物必须非常精确地知道病原体分子是否存在,它所要做的就是“手”的形状(想象一下,在一个有10,000人的房间里,试图通过他们的手的形状来识别一个人)。如果植物细胞感知到效应物,它会诱导细胞死亡,所以它必须正确处理。我们一直在研究来自微生物(真菌)的一组病原体效应子的相互作用,该微生物(真菌)会导致水稻的毁灭性疾病,而水稻是许多人依赖的主要粮食作物。我们已经能够定义这些效应器之一和植物传感蛋白之间的“握手”的性质。这只是相互作用的一个快照,我们需要通过植物的生物化学和生物学研究来了解其含义。为了做到这一点,我们将使用一些实验方法。首先,我们将定义病原体效应器和植物传感器之间的握手有多强。其次,我们将对分子的形状进行微小的改变,看看这如何影响握手的强度。然后,我们将研究自然界中这些病原体和植物分子在进化过程中发生的一些小变化,使用我们确定帮助我们的握手图片。我们也希望了解为什么病原体会产生它所产生的分子,我们会问这些分子在做什么。最后,在我们理解了这个系统中各种握手形成的相互作用后,我们将设计一种植物传感器蛋白,它可以识别一种以上的病原体分子,这可以让植物有更好的机会抵御感染。我们还将看看我们是否能让这种方法在水稻以外的植物中发挥作用,看看我们的新知识是否能帮助其他作物识别它们的病原体。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uncoiling CNLs: Structure/Function Approaches to Understanding CC Domain Function in Plant NLRs.
  • DOI:
    10.1093/pcp/pcy185
  • 发表时间:
    2018-12-01
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Bentham AR;Zdrzalek R;De la Concepcion JC;Banfield MJ
  • 通讯作者:
    Banfield MJ
Two NLR immune receptors acquired high-affinity binding to a fungal effector through convergent evolution of their integrated domain.
  • DOI:
    10.7554/elife.66961
  • 发表时间:
    2021-07-21
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Białas A;Langner T;Harant A;Contreras MP;Stevenson CE;Lawson DM;Sklenar J;Kellner R;Moscou MJ;Terauchi R;Banfield MJ;Kamoun S
  • 通讯作者:
    Kamoun S
Protein engineering expands the effector recognition profile of a rice NLR immune receptor
  • DOI:
    10.7554/elife.47713
  • 发表时间:
    2019-09-19
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    De la Concepcion, Juan Carlos;Franceschetti, Marina;Banfield, Mark J.
  • 通讯作者:
    Banfield, Mark J.
The allelic rice immune receptor Pikh confers extended resistance to strains of the blast fungus through a single polymorphism in the effector binding interface.
  • DOI:
    10.1371/journal.ppat.1009368
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    De la Concepcion JC;Maidment JHR;Longya A;Xiao G;Franceschetti M;Banfield MJ
  • 通讯作者:
    Banfield MJ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Banfield其他文献

いもち病菌(Magnaporthe oryzae)非病原力遺伝子AVR-Pikと相互作用するイネタンパク質の同定
与稻瘟病菌无毒基因 AVR-Pik 相互作用的水稻蛋白的鉴定
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    神崎洋之;斉藤宏昌;藤崎恒喜;小林光智衣;伊藤和江;神崎英子;三岡周子;Mark Banfield;Sophien Kamoun;寺内良平
  • 通讯作者:
    寺内良平

Mark Banfield的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Banfield', 18)}}的其他基金

Engineering CC-HMA-NLR immune receptors for disease resistance in crops (ERiC)
工程化 CC-HMA-NLR 免疫受体以提高作物抗病性 (ERiC)
  • 批准号:
    BB/W00108X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 53.6万
  • 项目类别:
    Research Grant
Engineering cereal immunity using structure-guided design of effector/host interactions.
使用效应器/宿主相互作用的结构引导设计来工程谷物免疫。
  • 批准号:
    BB/V015508/1
  • 财政年份:
    2022
  • 资助金额:
    $ 53.6万
  • 项目类别:
    Research Grant
Molecular mechanisms of virulence and avirulence in the Avr3a family of Phytophthora.
疫霉Avr3a家族毒力和无毒力的分子机制。
  • 批准号:
    BB/I01957X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 53.6万
  • 项目类别:
    Research Grant
Structure/function studies of a cyclomodulin
环调节蛋白的结构/功能研究
  • 批准号:
    BB/F008732/1
  • 财政年份:
    2008
  • 资助金额:
    $ 53.6万
  • 项目类别:
    Research Grant

相似海外基金

Dual-slope method for enhanced depth sensitivity in frequency-domain near-infrared spectroscopy
用于增强频域近红外光谱深度灵敏度的双斜率方法
  • 批准号:
    10457966
  • 财政年份:
    2021
  • 资助金额:
    $ 53.6万
  • 项目类别:
Dual-modality FLIm and PSOCT for intravascular imaging of plaque in patients
双模态 FLIm 和 PSOCT 用于患者斑块血管内成像
  • 批准号:
    10677774
  • 财政年份:
    2021
  • 资助金额:
    $ 53.6万
  • 项目类别:
Dual-modality FLIm and PSOCT for intravascular imaging of plaque in patients
双模态 FLIm 和 PSOCT 用于患者斑块血管内成像
  • 批准号:
    10306091
  • 财政年份:
    2021
  • 资助金额:
    $ 53.6万
  • 项目类别:
Dual-slope method for enhanced depth sensitivity in frequency-domain near-infrared spectroscopy
用于增强频域近红外光谱深度灵敏度的双斜率方法
  • 批准号:
    10210759
  • 财政年份:
    2021
  • 资助金额:
    $ 53.6万
  • 项目类别:
Bioluminescent indicators for noninvasive imaging of acetylcholine release
用于乙酰胆碱释放无创成像的生物发光指示器
  • 批准号:
    10196839
  • 财政年份:
    2021
  • 资助金额:
    $ 53.6万
  • 项目类别:
Multi-Wavelength Fluorescence Radical Dosimetry for Real-Time Assessment of Protein Footprinting Radical Yield
用于实时评估蛋白质足迹自由基产量的多波长荧光自由基剂量测定
  • 批准号:
    10250755
  • 财政年份:
    2021
  • 资助金额:
    $ 53.6万
  • 项目类别:
Discrete Wavelength Frequency Domain Near Infrared Spectroscopy for Non-Invasive Measurement of Cytochrome Oxidation State
离散波长频域近红外光谱法用于细胞色素氧化态的非侵入性测量
  • 批准号:
    10272895
  • 财政年份:
    2021
  • 资助金额:
    $ 53.6万
  • 项目类别:
Dual-slope method for enhanced depth sensitivity in frequency-domain near-infrared spectroscopy
用于增强频域近红外光谱深度灵敏度的双斜率方法
  • 批准号:
    10624381
  • 财政年份:
    2021
  • 资助金额:
    $ 53.6万
  • 项目类别:
Isolation, Characterization and Reconstruction of Vertebrate Striated Muscle Myosin Filaments
脊椎动物横纹肌肌球蛋白丝的分离、表征和重建
  • 批准号:
    10043292
  • 财政年份:
    2020
  • 资助金额:
    $ 53.6万
  • 项目类别:
Development of a high resolution assay to characterize exocytotic vesicle fusion
开发高分辨率测定法来表征胞吐囊泡融合
  • 批准号:
    10041876
  • 财政年份:
    2020
  • 资助金额:
    $ 53.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了