Dual-slope method for enhanced depth sensitivity in frequency-domain near-infrared spectroscopy
用于增强频域近红外光谱深度灵敏度的双斜率方法
基本信息
- 批准号:10457966
- 负责人:
- 金额:$ 47.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:Arachnoid materBiologicalBiomedical EngineeringBlood VesselsBlood VolumeBlood flowBrainBrain imagingBreastCerebrumClinicalCognitiveCollectionComplexDataDevelopmentDevicesDiagnosticDiffuseDiffusionDura MaterEffectivenessFatty acid glycerol estersFiberFrequenciesFunctional ImagingGenerationsGeometryHumanImageLasersLightMammary Gland ParenchymaMammographyMeasurementMeasuresMethodsMonitorMonte Carlo MethodMorphologic artifactsMotionMuscleNear-Infrared SpectroscopyNoiseOpticsOxygen ConsumptionOxygen saturation measurementPathologyPerformancePhasePlayPrefrontal CortexPropertyResearchResearch Project GrantsRoleScalp structureSchemeSignal TransductionSiliconSkeletal MuscleSkinSourceSpecificitySpectrum AnalysisStrokeSubarachnoid SpaceSurfaceSystemTechniquesTechnologyTelemetryTestingTheoretical StudiesTimeTissuesWalkingYangbasebrain tissuecerebral hemodynamicscerebral oxygenationclinical applicationcognitive taskcognitive testingcomputerized data processingcostcost effectivecraniumdesigndetectordiagnostic tooldiffuse optical spectroscopy and imagingflexibilityhemodynamicshuman subjectimprovedin vivoinstrumentinstrumentationmicrochipmicrosystemsneurovascularnovelnovel strategiesperformance testspoint of carepoint-of-care diagnosticssignal processingsimulationsolid statesubcutaneoustheorieswearable devicewirelesswireless communication
项目摘要
PROJECT SUMMARY
In this Bioengineering Research project, we propose to develop a novel technique for frequency-domain near-
infrared spectroscopy (FD-NIRS) that aims to achieve selective sensitivity to deeper tissue in non-invasive
diffuse optical spectroscopy and imaging. A technique that features a stronger sensitivity to deeper tissue
relative to superficial tissue can have a broad impact on non-invasive optical diagnostics and monitoring and is
especially important in cerebral oximetry and functional brain imaging. The proposed technique is based on the
new concept of phase dual-slopes (this is the phase of the modulated optical signal measured in FD-NIRS),
which requires a minimum of two light sources and two optical detectors placed on the tissue according to a
special arrangement. In addition to achieving selective sensitivity to deeper tissue, phase dual slopes are
weakly sensitive to instrumental drifts and motion artifacts (except spikes), which is a highly desirable property
for robust measurements. First, we will use diffusion theory and Monte Carlo simulations to identify
source/detector geometrical arrangements and intensity modulation frequencies that optimize performance of
the phase dual-slope for a variety of heterogeneous layered media. Second, we will implement optimal phase
dual-slope conditions with a commercial FD-NIRS instrument to demonstrate effectiveness on tissue-like
phantoms, and we will design special source-detector arrays for imaging based on the Moore-Penrose
pseudoinverse of the Jacobian matrix for phase dual-slope measurements. Third, we will design and build a
dedicated compact, wearable, fiber-less, and cost-effective FD-NIRS device for further broadening the
applicability of the phase dual-slope method to freely moving subjects in everyday conditions, and for point-of-
care applications. Fourth, we will perform human studies for technical performance tests (in skeletal muscle
during vascular occlusions) and to demonstrate the effectiveness of the phase dual-slope method for functional
brain imaging (in the prefrontal cortex during cognitive activation). In particular, the latter study will elucidate
the relative blood flow/blood volume contributions to cortical hemodynamics and will allow for dual-task
measurements in subjects performing cognitive tasks while walking. The broad objective of this project is to
advance the field of diffuse optical measurements of biological tissue by developing special techniques for
collection and analysis of FD-NIRS data to enhance the quality, reliability, and information content of non-
invasive NIRS in research and clinical applications.
项目总结
在这个生物工程研究项目中,我们提出了一种新的频域近距离成像技术。
红外光谱(FD-NIRS),旨在非侵入性地实现对深部组织的选择性敏感性
漫反射光谱分析和成像。一种对深层组织具有更强敏感性的技术
相对于浅表组织可对非侵入性光学诊断和监测产生广泛影响
在脑血氧仪和脑功能成像中尤为重要。建议的技术基于
相位双斜率(这是在FD-NIR中测量的调制光信号的相位)的新概念,
其至少需要两个光源和两个光学探测器放置在组织上
有特别安排。除了实现对更深层次组织的选择性敏感性外,相位双斜率还
对乐器漂移和运动伪像(钉子除外)的敏感度很低,这是非常理想的特性
用于强健的测量。首先,我们将使用扩散理论和蒙特卡罗模拟来识别
源/探测器的几何布置和强度调制频率可优化
相双斜率适用于各种非均质层状介质。二是实施优化阶段
用商用FD-NIRS仪器演示双斜率条件下对组织样治疗的有效性
体模,我们将设计基于摩尔-彭罗斯的特殊源-探测器阵列进行成像
相位双斜率测量中雅可比矩阵的伪逆。第三,我们将设计和建设一个
专用紧凑型、可穿戴、无光纤且经济实惠的FD-NIR设备,可进一步扩展
相位双斜率法适用于日常条件下自由运动的受试者,以及适用于点
护理应用程序。第四,我们将进行人体研究以进行技术性能测试(在骨骼肌中
在血管闭塞期间),并展示了相位双斜率方法在功能性
大脑成像(在认知激活时在前额叶皮质)。特别是,后一项研究将阐明
相对血流量/血容量对皮质血流动力学的贡献,并将允许双重任务
行走时完成认知任务的受试者的测量结果。该项目的总体目标是
通过开发特殊技术来推进生物组织的漫反射光学测量领域
收集和分析FD-NIR数据,以提高非红外光谱数据的质量、可靠性和信息含量
侵入性近红外光谱在研究和临床中的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SERGIO FANTINI其他文献
SERGIO FANTINI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SERGIO FANTINI', 18)}}的其他基金
Dual-slope method for enhanced depth sensitivity in frequency-domain near-infrared spectroscopy
用于增强频域近红外光谱深度灵敏度的双斜率方法
- 批准号:
10210759 - 财政年份:2021
- 资助金额:
$ 47.74万 - 项目类别:
Dual-slope method for enhanced depth sensitivity in frequency-domain near-infrared spectroscopy
用于增强频域近红外光谱深度灵敏度的双斜率方法
- 批准号:
10624381 - 财政年份:2021
- 资助金额:
$ 47.74万 - 项目类别:
Coherent hemodynamics spectroscopy for cerebral autoregulation and blood flow
用于脑自动调节和血流的相干血流动力学光谱
- 批准号:
9921500 - 财政年份:2016
- 资助金额:
$ 47.74万 - 项目类别:
Non-invasive optical detection of cerebral hemodynamics and metabolic transients
脑血流动力学和代谢瞬态的无创光学检测
- 批准号:
9185520 - 财政年份:2016
- 资助金额:
$ 47.74万 - 项目类别:
Near-infrared spectral imaging of the breast for cancer detection and monitoring
用于癌症检测和监测的乳腺近红外光谱成像
- 批准号:
8461711 - 财政年份:2011
- 资助金额:
$ 47.74万 - 项目类别:
Near-infrared spectral imaging of the breast for cancer detection and monitoring
用于癌症检测和监测的乳腺近红外光谱成像
- 批准号:
8848348 - 财政年份:2011
- 资助金额:
$ 47.74万 - 项目类别:
Near-infrared spectral imaging of the breast for cancer detection and monitoring
用于癌症检测和监测的乳腺近红外光谱成像
- 批准号:
8191273 - 财政年份:2011
- 资助金额:
$ 47.74万 - 项目类别:
Near-infrared spectral imaging of the breast for cancer detection and monitoring
用于癌症检测和监测的乳腺近红外光谱成像
- 批准号:
8300116 - 财政年份:2011
- 资助金额:
$ 47.74万 - 项目类别:
相似海外基金
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 47.74万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 47.74万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 47.74万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 47.74万 - 项目类别:
Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
- 批准号:
2419343 - 财政年份:2024
- 资助金额:
$ 47.74万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 47.74万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 47.74万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 47.74万 - 项目类别:
Standard Grant
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 47.74万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 47.74万 - 项目类别:
Research Grant