A platform for high throughput, cell type-restricted in vivo knockdown of pre- or postsynaptic gene expression

用于高通量、细胞类型限制的体内突触前或突触后基因表达敲除的平台

基本信息

  • 批准号:
    BB/M025454/1
  • 负责人:
  • 金额:
    $ 59.54万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

One of the most challenging problems in science is to understand how the molecules expressed by nerve cells in the brain enable thoughts and actions to take place. Addressing this challenge is of fundamental importance for understanding how brains work. It will also underpin future development of therapies for neurological and psychiatric disorders, and of biologically inspired computing technologies. However, while cells in the brain are very much like those in other organs, figuring out how molecules in cells contribute to brain functions is exceptionally challenging because of the brain's great complexity. Conventionally one could study the function of a molecule by finding drugs that bind to it, or by engineering animals from which the molecule is deleted. However, many brain functions involve signals being passed between different types of cell that are found nearby one another. With conventional approaches it is usually difficult and very time consuming to figure out which cell type mediates a molecules effects. Moreover, with these approaches a single model animal can usually only be used to study one molecular target.To address these issues we propose to develop a system for relatively low cost and efficient investigation of the role of any given molecule in signalling between a particular population of neurons and identified neurons with which they interact. This system will use viruses to introduce two types of genetic sequence into neurons. The first encodes short interfering RNAs. These are short genetic sequences that contain recognition sites that enable them to "knockdown" targeted molecules. They can be designed to knockdown expression of almost any molecule of interest. The second type of genetic sequence encodes proteins that act either as fluorescent labels or as light-sensitive neuronal activators. These proteins can be used to identify and control infected neurons. The particular power of our system comes from a novel approach we will use to control the cells in which these two types of genetic sequence are expressed. This system makes expression of both types of sequence require the presence of marker molecules called Cre and Flp. By introducing viruses into animals in which Cre and Flp label cell populations of interest, we can target expression of the virally delivered proteins and interfering RNAs to these populations.We propose to validate this new approach by developing new tools aimed at studying neural circuits in a brain area called the entorhinal cortex. This region is important for spatial cognition. Focussing on this region allows us to take advantage of well established experimental assays, while generating tools that should enable us to address previously very challenging questions. Our first aim will be to generate and characterise tools that knockdown expression of particular ion channels in only a single type of cell. Our second aim will be to make tools that knockdown expression of receptors at either the up- or downstream side of a connection between two distinct populations of neurons. The tools will also allow the upstream neurons to be activated specifically with light and the downstream neurons to be identified by their fluorescence in order to guide subsequent electrical recordings. Our third aim will be to carry out preliminary work to extend our approach to investigation of multiple molecular targets in parallel in the same animal.On completion of the project we aim to have introduced and validated a new toolset for high throughput and low cost investigation of the roles of signalling molecules at connections between defined neuronal populations. The platforms that we aim to establish will be of general utility for fundamental and applied research into molecular mechanisms of signalling between cell populations. Applications include investigation of mechanisms of cognitive function in the young and ageing brain, and development of novel models for drug development.
科学中最具挑战性的问题之一是了解大脑中神经细胞表达的分子如何使思想和行动发生。解决这一挑战对于理解大脑如何工作至关重要。它还将支持未来神经和精神疾病治疗的发展,以及生物启发的计算技术。然而,虽然大脑中的细胞与其他器官中的细胞非常相似,但由于大脑的巨大复杂性,弄清楚细胞中的分子如何促进大脑功能是非常具有挑战性的。传统上,人们可以通过寻找与分子结合的药物来研究分子的功能,或者通过工程动物来删除该分子。然而,许多大脑功能涉及在彼此附近发现的不同类型的细胞之间传递信号。使用常规方法,通常很难并且非常耗时地找出哪种细胞类型介导分子效应。此外,与这些方法一个单一的模型动物通常只能用于研究一个分子target.To解决这些问题,我们建议开发一个系统相对低成本和有效的调查任何给定的分子之间的作用,一个特定的群体的神经元和确定的神经元与它们相互作用的信号。该系统将使用病毒将两种类型的基因序列引入神经元。第一个编码短干扰RNA。这些是短的基因序列,含有识别位点,使它们能够“敲低”靶分子。它们可以被设计为敲低几乎任何感兴趣分子的表达。第二种类型的基因序列编码的蛋白质既可以作为荧光标记,也可以作为光敏神经元激活剂。这些蛋白质可用于识别和控制受感染的神经元。我们的系统的特殊力量来自于一种新的方法,我们将使用这种方法来控制表达这两种基因序列的细胞。该系统使得两种类型的序列的表达都需要称为Cre和Flp的标记分子的存在。通过将病毒引入Cre和Flp标记感兴趣细胞群的动物中,我们可以将病毒递送的蛋白质和干扰RNA的表达靶向这些population.We建议通过开发旨在研究称为内嗅皮层的大脑区域中的神经回路的新工具来验证这种新方法。这个区域对空间认知很重要。专注于这一领域使我们能够利用成熟的实验分析,同时生成工具,使我们能够解决以前非常具有挑战性的问题。我们的第一个目标将是产生和验证仅在单一类型细胞中敲低特定离子通道表达的工具。我们的第二个目标将是制造工具,在两个不同的神经元群体之间的连接的上游或下游侧敲低受体的表达。这些工具还将允许上游神经元特异性地被光激活,下游神经元通过其荧光被识别,以指导随后的电记录。我们的第三个目标将是开展初步工作,以扩大我们的方法,在同一animal.On项目完成后,我们的目标是平行的多个分子靶点的调查已经推出并验证了一个新的工具集的高通量和低成本的调查信号分子在定义的神经元群体之间的连接的作用。我们的目标是建立的平台将是一般效用的基础和应用研究细胞群体之间的信号传导的分子机制。其应用包括研究年轻和衰老大脑中认知功能的机制,以及开发药物开发的新模型。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synaptic integrative mechanisms for spatial cognition.
空间认知的突触整合机制。
  • DOI:
    10.1038/nn.4652
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    25
  • 作者:
    Schmidt-Hieber C
  • 通讯作者:
    Schmidt-Hieber C
Fan cells in layer 2 of lateral entorhinal cortex are critical for episodic-like memory
外侧内嗅皮层第 2 层的扇细胞对于情景记忆至关重要
  • DOI:
    10.1101/543777
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vandrey B
  • 通讯作者:
    Vandrey B
Telencephalic outputs from the medial entorhinal cortex are copied directly to the hippocampus.
  • DOI:
    10.7554/elife.73162
  • 发表时间:
    2022-02-21
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Tsoi SY;Öncül M;Svahn E;Robertson M;Bogdanowicz Z;McClure C;Sürmeli G
  • 通讯作者:
    Sürmeli G
Fan Cells in Layer 2 of the Lateral Entorhinal Cortex Are Critical for Episodic-like Memory
外侧内嗅皮层第二层的扇形细胞对于情景记忆至关重要
  • DOI:
    10.1016/j.cub.2019.11.027
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Vandrey B
  • 通讯作者:
    Vandrey B
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Nolan其他文献

ANOMALOUS RIGHT CORONARY ARTERY OCCLUSION AND INTERVENTRICULAR SEPTAL RUPTURE IN THE LANDSCAPE OF ACUTE INFERIOR MYOCARDIAL INFARCTION
急性下壁心肌梗死中的异常右冠状动脉闭塞与室间隔破裂
  • DOI:
    10.1016/s0735-1097(25)04081-1
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    22.300
  • 作者:
    Arpeet Patel;Arjun Basnet;Matthew Nolan;Sijan Basnet;Aniruddha Singh;Roy Lim;Christopher Reggio
  • 通讯作者:
    Christopher Reggio
PERICARDIAL SAC RUPTURE INDUCED BY DRY HEAVES: A CASE REPORT
干呕引发的心包囊破裂:1例病例报告
  • DOI:
    10.1016/s0735-1097(25)04679-0
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    22.300
  • 作者:
    Brisha Bhikadiya Best;David Murillo Garcia;Matthew Nolan
  • 通讯作者:
    Matthew Nolan
Regulation of secondary metabolism in emCannabis sativa/em glandular trichomes by abscisic acid and water deficit stress during late flowering development
花期后期发育过程中脱落酸和水分亏缺胁迫对大麻腺毛次生代谢的调控
  • DOI:
    10.1016/j.stress.2025.100799
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Nicolas Dimopoulos;Qi Guo;Lei Liu;Razlin Azman Halimi;Lennard Garcia-de Heer;Matthew Nolan;Jos C. Mieog;Bronwyn J. Barkla;Tobias Kretzschmar
  • 通讯作者:
    Tobias Kretzschmar
Barriers and facilitators to using an objective risk communication tool during primary care dental consultations: A Theoretical Domains Framework (TDF) informed qualitative study.
在初级保健牙科咨询期间使用客观风险沟通工具的障碍和促进因素:理论领域框架(TDF)知情的定性研究。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Danielle Musson;Heather Buchanan;Matthew Nolan;K. Asimakopoulou
  • 通讯作者:
    K. Asimakopoulou
Respiratory and Circulatory Failure From Abscess-Related Pneumomediastinum and Overflow Pneumoperitoneum
  • DOI:
    10.1016/j.chest.2016.08.559
  • 发表时间:
    2016-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Matthew Nolan;John Park
  • 通讯作者:
    John Park

Matthew Nolan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Nolan', 18)}}的其他基金

Connecting objects to places: functional investigation of projections from lateral to medial entorhinal cortex
连接物体与地点:从外侧内嗅皮层到内侧内嗅皮层投射的功能研究
  • 批准号:
    BB/V010107/1
  • 财政年份:
    2021
  • 资助金额:
    $ 59.54万
  • 项目类别:
    Research Grant
Validation of rAAV-focused commercial opportunities
验证以 rAAV 为重点的商业机会
  • 批准号:
    BB/N005120/1
  • 财政年份:
    2015
  • 资助金额:
    $ 59.54万
  • 项目类别:
    Research Grant
A systems approach to the cellular and molecular organization of neural circuits for representation of space
用于空间表示的神经回路的细胞和分子组织的系统方法
  • 批准号:
    BB/L010496/1
  • 财政年份:
    2014
  • 资助金额:
    $ 59.54万
  • 项目类别:
    Research Grant
A systems approach to long-term in vivo homeostatic control of neural activity
神经活动长期体内稳态控制的系统方法
  • 批准号:
    BB/I022147/1
  • 财政年份:
    2011
  • 资助金额:
    $ 59.54万
  • 项目类别:
    Research Grant
A systems approach to investigating the roles of cellular mechanisms for tuning of neural computation in the entorhinal cortex
一种研究细胞机制对内嗅皮层神经计算调节作用的系统方法
  • 批准号:
    BB/H020284/1
  • 财政年份:
    2010
  • 资助金额:
    $ 59.54万
  • 项目类别:
    Research Grant
Computational tools for simulation of stochastic ion channel activity in neurons
用于模拟神经元随机离子通道活动的计算工具
  • 批准号:
    BB/E014526/1
  • 财政年份:
    2006
  • 资助金额:
    $ 59.54万
  • 项目类别:
    Research Grant

相似国自然基金

转录因子DNA结合谱绘制新方法及其应用研究
  • 批准号:
    61171030
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Developing an ultra-high throughput droplet microfluidic workflow for genetic circuit characterization
开发用于遗传电路表征的超高通量液滴微流体工作流程
  • 批准号:
    10680017
  • 财政年份:
    2023
  • 资助金额:
    $ 59.54万
  • 项目类别:
BEASTS-Novel Biomimetic Liver Platform for Enabling ALD Researchers
BEASTS-为 ALD 研究人员提供支持的新型仿生肝脏平台
  • 批准号:
    10697452
  • 财政年份:
    2023
  • 资助金额:
    $ 59.54万
  • 项目类别:
A High-Throughput Screening Platform to Discover RNA Methylation Inhibitors
发现 RNA 甲基化抑制剂的高通量筛选平台
  • 批准号:
    10705980
  • 财政年份:
    2023
  • 资助金额:
    $ 59.54万
  • 项目类别:
Mapping proximal and distal splicing-regulatory elements
绘制近端和远端剪接调控元件
  • 批准号:
    10658516
  • 财政年份:
    2023
  • 资助金额:
    $ 59.54万
  • 项目类别:
Vesicle Epitope Transcript sequencing (VET-seq): Droplet-based Multiomic Profiling Platform for Single Vesicle Analysis
囊泡表位转录本测序 (VET-seq):用于单囊泡分析的基于液滴的多组学分析平台
  • 批准号:
    10613257
  • 财政年份:
    2023
  • 资助金额:
    $ 59.54万
  • 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
  • 批准号:
    10598276
  • 财政年份:
    2023
  • 资助金额:
    $ 59.54万
  • 项目类别:
Pooled Optical Imaging, Neurite Tracing, and Morphometry Across Perturbations (POINT-MAP).
混合光学成像、神经突追踪和扰动形态测量 (POINT-MAP)。
  • 批准号:
    10741188
  • 财政年份:
    2023
  • 资助金额:
    $ 59.54万
  • 项目类别:
MetabolGut: a rapid assay platform to evaluate the impact drugs on lipid-handlingpathways and chylomicron-associated drug distribution using stem cell-drivenhuman absorptive enterocytes.
MetabolGut:一个快速检测平台,使用干细胞驱动的人体吸收性肠上皮细胞来评估药物对脂质处理途径和乳糜微粒相关药物分布的影响。
  • 批准号:
    10766493
  • 财政年份:
    2023
  • 资助金额:
    $ 59.54万
  • 项目类别:
Developing a new platform to characterize and treat disease-associated polycystin variants
开发一个新平台来表征和治疗与疾病相关的多囊蛋白变体
  • 批准号:
    10726754
  • 财政年份:
    2023
  • 资助金额:
    $ 59.54万
  • 项目类别:
Real-time and high-throughput observation of nanomedicine behaviors of inside cancer cell spheroids with an integrated model of light sheet fluorescence microscopy and a microfluidic platform
利用光片荧光显微镜和微流控平台的集成模型实时高通量观察癌细胞球体内部的纳米医学行为
  • 批准号:
    23K19100
  • 财政年份:
    2023
  • 资助金额:
    $ 59.54万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了