Computational tools for simulation of stochastic ion channel activity in neurons

用于模拟神经元随机离子通道活动的计算工具

基本信息

  • 批准号:
    BB/E014526/1
  • 负责人:
  • 金额:
    $ 10.55万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

A fundamental goal of modern biology is to understand how the physical and behavioural characteristics of living organisms arise from components, such as cells and molecules, which are often too small to be seen with the naked eye. Considerable progress has been made towards determining how the physical properties of living organisms are specified by their genetic code, which is contained in individual molecules of DNA. By contrast, we understand much less about the physical principles that govern human or animal behaviour. For example, although it is clear that communication between nerve cells is a key component of brain function, the appropriate level of physical detail at which nerve cells must be understood to fully account for human or animal behaviour is far from clear. Most nerve cells have ornate branching structures, called axons and dendrites, which play fundamental roles in processing of information in the brain. In a single nerve cell these structures may contain well over a million ion channels, small molecules that determine how the cell processes information. While in the past neuroscientists have generally only considered how the average activity of this large umber of ion channels influences the function of nerve cells, recent evidence suggests that fluctuations in the activity of individual ion channels may be a critical determinant of nervous system function. Yet, we have few clear insights into how this basic property of ion channel function affects information processing in the brain. One promising approach to this problem is to develop computer models to simulate ion channel activity. However, at present accurately simulating the activity of each ion channel in complex neuronal structures is a formidable task, and it has therefore been difficult to explore how fluctuations in the activity of individual ion channels influences brain function. The goal of the proposed study is to develop new tools to efficiently simulate models of neurons or neuronal circuits that explicitly simulate the activity and location of individual ion channels. These tools will take advantage of recently developed computational algorithms, together with advances in computer science and methods for parallel computing, to reduce the time required for simulation of these models by greater than 100 fold. To facilitate compatibility with other widely used software, the tools will build on current community standards for specification of neuronal models and will be made freely available for download by other researchers or interested parties. Development of these new computational tools will enable new and fundamental questions to be addressed. For example, what particular aspects of neural information processing are most sensitive to fluctuations in the activity of individual ion channels? Do these fluctuations impair neural function, for example by introducing noise, or do they increase the computational power of neural circuits, for example though stochastic resonance effects? If they impair neural function then what mechanisms have evolved to counteract this effect? Conversely, if they confer benefits, then how are these advantages optimized in biological systems? The proposed project will prime new areas of research in the principal investigators laboratory that will aim to address these questions. More generally it will provide a new set of tools, of general use to the wider research community, that may lead to a better understanding of the relationship between the properties of single ion channel molecules, computations carried out by neural circuits and the behaviour of living organisms.
现代生物学的一个基本目标是了解活生物体的物理和行为特征是如何从诸如细胞和分子之类的成分中产生的,这些成分通常太小而无法用肉眼看到。在确定生物体的物理特性是如何由它们的遗传密码决定的方面已经取得了相当大的进展,遗传密码包含在单个DNA分子中。相比之下,我们对支配人类或动物行为的物理原理的了解要少得多。例如,虽然神经细胞之间的交流是大脑功能的关键组成部分,这一点很清楚,但要充分解释人类或动物的行为,必须了解神经细胞的适当物理细节水平,这一点还远不清楚。大多数神经细胞都有华丽的分支结构,被称为轴突和树突,它们在大脑的信息处理中起着重要作用。在单个神经细胞中,这些结构可能包含超过一百万个离子通道,这些小分子决定了细胞如何处理信息。过去,神经科学家通常只考虑大量离子通道的平均活动如何影响神经细胞的功能,但最近的证据表明,单个离子通道活动的波动可能是神经系统功能的关键决定因素。然而,对于离子通道功能的这一基本特性如何影响大脑中的信息处理,我们知之甚少。解决这个问题的一个有希望的方法是开发计算机模型来模拟离子通道的活性。然而,目前准确模拟复杂神经元结构中每个离子通道的活动是一项艰巨的任务,因此很难探索单个离子通道活动的波动如何影响大脑功能。这项研究的目标是开发新的工具来有效地模拟神经元或神经元回路的模型,明确地模拟单个离子通道的活动和位置。这些工具将利用最近开发的计算算法,以及计算机科学和并行计算方法的进步,将模拟这些模型所需的时间减少100倍以上。为了促进与其他广泛使用的软件的兼容性,这些工具将建立在当前的神经元模型规范社区标准之上,并将免费提供给其他研究人员或感兴趣的团体下载。这些新的计算工具的发展将使新的和基本的问题得到解决。例如,神经信息处理的哪些特定方面对单个离子通道活动的波动最敏感?这些波动是否会损害神经功能,例如通过引入噪声,或者它们是否会增加神经回路的计算能力,例如通过随机共振效应?如果它们损害神经功能,那么进化出了什么机制来抵消这种影响?相反,如果它们能带来好处,那么这些好处如何在生物系统中得到优化?拟议的项目将在主要研究人员实验室中开辟新的研究领域,旨在解决这些问题。更一般地说,它将提供一套新的工具,对更广泛的研究团体普遍使用,这可能会导致更好地理解单个离子通道分子的性质,神经回路进行的计算和生物体行为之间的关系。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Nolan其他文献

ANOMALOUS RIGHT CORONARY ARTERY OCCLUSION AND INTERVENTRICULAR SEPTAL RUPTURE IN THE LANDSCAPE OF ACUTE INFERIOR MYOCARDIAL INFARCTION
急性下壁心肌梗死中的异常右冠状动脉闭塞与室间隔破裂
  • DOI:
    10.1016/s0735-1097(25)04081-1
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    22.300
  • 作者:
    Arpeet Patel;Arjun Basnet;Matthew Nolan;Sijan Basnet;Aniruddha Singh;Roy Lim;Christopher Reggio
  • 通讯作者:
    Christopher Reggio
PERICARDIAL SAC RUPTURE INDUCED BY DRY HEAVES: A CASE REPORT
干呕引发的心包囊破裂:1例病例报告
  • DOI:
    10.1016/s0735-1097(25)04679-0
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    22.300
  • 作者:
    Brisha Bhikadiya Best;David Murillo Garcia;Matthew Nolan
  • 通讯作者:
    Matthew Nolan
Regulation of secondary metabolism in emCannabis sativa/em glandular trichomes by abscisic acid and water deficit stress during late flowering development
花期后期发育过程中脱落酸和水分亏缺胁迫对大麻腺毛次生代谢的调控
  • DOI:
    10.1016/j.stress.2025.100799
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Nicolas Dimopoulos;Qi Guo;Lei Liu;Razlin Azman Halimi;Lennard Garcia-de Heer;Matthew Nolan;Jos C. Mieog;Bronwyn J. Barkla;Tobias Kretzschmar
  • 通讯作者:
    Tobias Kretzschmar
Barriers and facilitators to using an objective risk communication tool during primary care dental consultations: A Theoretical Domains Framework (TDF) informed qualitative study.
在初级保健牙科咨询期间使用客观风险沟通工具的障碍和促进因素:理论领域框架(TDF)知情的定性研究。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Danielle Musson;Heather Buchanan;Matthew Nolan;K. Asimakopoulou
  • 通讯作者:
    K. Asimakopoulou
Characterisation of Cannabis glandular trichome development reveals distinct features of cannabinoid biosynthesis
  • DOI:
    10.1007/s00299-024-03410-9
  • 发表时间:
    2025-01-13
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Matthew Nolan;Qi Guo;Lei Liu;Nicolas Dimopoulos;Lennard Garcia-de Heer;Bronwyn J. Barkla;Tobias Kretzschmar
  • 通讯作者:
    Tobias Kretzschmar

Matthew Nolan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Nolan', 18)}}的其他基金

Connecting objects to places: functional investigation of projections from lateral to medial entorhinal cortex
连接物体与地点:从外侧内嗅皮层到内侧内嗅皮层投射的功能研究
  • 批准号:
    BB/V010107/1
  • 财政年份:
    2021
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Research Grant
A platform for high throughput, cell type-restricted in vivo knockdown of pre- or postsynaptic gene expression
用于高通量、细胞类型限制的体内突触前或突触后基因表达敲除的平台
  • 批准号:
    BB/M025454/1
  • 财政年份:
    2015
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Research Grant
Validation of rAAV-focused commercial opportunities
验证以 rAAV 为重点的商业机会
  • 批准号:
    BB/N005120/1
  • 财政年份:
    2015
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Research Grant
A systems approach to the cellular and molecular organization of neural circuits for representation of space
用于空间表示的神经回路的细胞和分子组织的系统方法
  • 批准号:
    BB/L010496/1
  • 财政年份:
    2014
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Research Grant
A systems approach to long-term in vivo homeostatic control of neural activity
神经活动长期体内稳态控制的系统方法
  • 批准号:
    BB/I022147/1
  • 财政年份:
    2011
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Research Grant
A systems approach to investigating the roles of cellular mechanisms for tuning of neural computation in the entorhinal cortex
一种研究细胞机制对内嗅皮层神经计算调节作用的系统方法
  • 批准号:
    BB/H020284/1
  • 财政年份:
    2010
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Research Grant

相似海外基金

A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
  • 批准号:
    10727940
  • 财政年份:
    2023
  • 资助金额:
    $ 10.55万
  • 项目类别:
Computational Infrastructure for Automated Force Field Development and Optimization
用于自动力场开发和优化的计算基础设施
  • 批准号:
    10699200
  • 财政年份:
    2023
  • 资助金额:
    $ 10.55万
  • 项目类别:
Triage of Developmental and Reproductive Toxicants using an In vitro to In Vivo Extrapolation (IVIVE)-Toxicokinetic Computational modeling Application
使用体外到体内外推法 (IVIVE) 对发育和生殖毒物进行分类 - 毒代动力学计算模型应用
  • 批准号:
    10757140
  • 财政年份:
    2023
  • 资助金额:
    $ 10.55万
  • 项目类别:
SCH: Using Data-Driven Computational Biomechanics to Disentangle Brain Structural Commonality, Variability, and Abnormality in ASD
SCH:利用数据驱动的计算生物力学来解开 ASD 中脑结构的共性、变异性和异常性
  • 批准号:
    10814620
  • 财政年份:
    2023
  • 资助金额:
    $ 10.55万
  • 项目类别:
Predicting maladaptive aversive learning via computational modeling of insular single cell ensemble activity patterns
通过岛叶单细胞整体活动模式的计算模型来预测适应不良的厌恶学习
  • 批准号:
    10575313
  • 财政年份:
    2023
  • 资助金额:
    $ 10.55万
  • 项目类别:
Enabling Rational Design of Drug Targeting Protein-Protein Interactions with Physics-based Computational Modeling
通过基于物理的计算模型合理设计靶向药物的蛋白质-蛋白质相互作用
  • 批准号:
    10710974
  • 财政年份:
    2023
  • 资助金额:
    $ 10.55万
  • 项目类别:
Developing Computational Tools for Predicting and Designing Function-Enhancing Enzyme Variants
开发用于预测和设计功能增强酶变体的计算工具
  • 批准号:
    10701740
  • 财政年份:
    2022
  • 资助金额:
    $ 10.55万
  • 项目类别:
Computational methods for studying single-cell 3D genome
研究单细胞 3D 基因组的计算方法
  • 批准号:
    10570830
  • 财政年份:
    2022
  • 资助金额:
    $ 10.55万
  • 项目类别:
Improving Outcomes in Pediatric Obstructive Sleep Apnea with Computational Fluid Dynamics
利用计算流体动力学改善小儿阻塞性睡眠呼吸暂停的治疗效果
  • 批准号:
    10543171
  • 财政年份:
    2022
  • 资助金额:
    $ 10.55万
  • 项目类别:
Core 2 - Computational Biology Core
核心 2 - 计算生物学核心
  • 批准号:
    10643913
  • 财政年份:
    2022
  • 资助金额:
    $ 10.55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了