14CONFAP UNDERSTANDING CELL WALL STRUCTURE AND HYDROLYSIS OF TWO LEADING C4 BIOENERGY CROPS TO IMPROVE SECOND GENERATION BIOETHANOL PRODUCTION

14CONFAP 了解两种主要 C4 生物能源作物的细胞壁结构和水解,以提高第二代生物乙醇产量

基本信息

  • 批准号:
    BB/M029212/1
  • 负责人:
  • 金额:
    $ 3.53万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Summary: The transition from first-generation (1G) bioethanol to a more productive and sustainable bioeconomy based on plant biomass is essential for Brazil to remain at the forefront in clean energy production and to strengthen security of food and energy supplies, create jobs, and mitigate climate change. A key challenge associated with the transition from 1G to second-generation (2G) biofuels is the difficulty to release sugars from cell walls to produce bioethanol with economic viability. Understanding the factors that govern recalcitrance and engineering cell wall architectures and hydrolytic enzymes for enhanced sugar release is crucial for the commercial exploitation of lignocellulosic feedstocks and realization of the bio-economy concept. Another important aspect is the development of biomass crops that maintain biomass productivity and quality under water-scarce environments unsuited for growing food crops. This aspect is even more important in a scenario of predicted climate change, where we need to quickly adapt crops to challenging environmental conditions. Activities comprise a mix of networking, research and landscape-scoping activities, integrated between the partners, across three different work packages:WP1: Tailored enzyme cocktails matching feedstock & pretreatment. The aim within the framework of this 1-year award will be to provide preliminary data on the potential of cocktail-feedstock-pretreatment matching. Current commercial enzymes are based on the one-size-fits-all approach. Since enzymes are a major contributor to biomass processing costs, creating customized enzyme cocktails that are tailored to specific pretreatments and feedstocks, will reduce enzyme loading and therefore processing costs. This WP will deliver proof of concept for the enormous potential of matching enzyme cocktails to feedstock and pretreatment. WP2: Engineering the hydrolytic enzymes and feedstocks of the future. Synthetic biology offers exciting engineering opportunities to facilitate the release of sugars from plant cell wall biomass. One example is that of "biological pretreatment", a concept based on exploiting and redesigning some of the endogenous hydrolytic enzymes and processes already taking place in plants. Another attractive strategy to improve cell wall deconstruction is through the in planta expression of thermostable cell wall degrading enzymes. We will organize a workshop to effectively capture the potential of such synthetic biology approaches and produce a strategy document based around engineered ideotypes for both "in planta deconstruction" and "multifunctional hydrolytic enzymes". The outcomes of this work-package provides the foundation for further implementation of synthetic biology approaches in the area of plant cell walls and will position the partners at the forefront of this emerging research area.WP3: Effect of environmental and genetic factors on cell wall biomass quality and conversion. The composition and architecture of cell wall biomass can differ significantly depending on tissue, species, cultivar, and environmental conditions. Mapping variations in biomass quality is particularly important in the context of climate change and developing sugarcane varieties suitable for cultivation on marginal land. The integration of cell wall phenotyping data with those from saccharification assays will provide essential information on how differences in biomass tissue, varieties/genetics, and environmental conditions impact on cell wall quality and biomass deconstruction into its components sugars. The outcomes of this controlled environment experiment represent a platform for the translation and design of future field trial studies focussing on utilizing marginal land available in Brazil.
摘要:从第一代 (1G) 生物乙醇向基于植物生物质的生产力更高、更可持续的生物经济转型,对于巴西保持清洁能源生产的领先地位、加强粮食和能源供应安全、创造就业机会和缓解气候变化至关重要。从 1G 到第二代 (2G) 生物燃料过渡的一个关键挑战是难以从细胞壁释放糖来生产具有经济可行性的生物乙醇。了解控制顽抗性的因素以及改造细胞壁结构和水解酶以增强糖释放对于木质纤维素原料的商业开发和生物经济概念的实现至关重要。另一个重要方面是发展生物质作物,在不适合种植粮食作物的缺水环境下保持生物质生产力和质量。在预测气候变化的情况下,这一点更为重要,我们需要快速使作物适应具有挑战性的环境条件。活动包括网络、研究和景观范围界定活动的组合,在合作伙伴之间整合,跨越三个不同的工作包:WP1:与原料和预处理相匹配的定制酶混合物。该为期一年的奖项的目的是提供有关鸡尾酒-原料-预处理匹配潜力的初步数据。目前的商业酶是基于一刀切的方法。由于酶是生物质加工成本的主要贡献者,因此创建针对特定预处理和原料的定制酶混合物将减少酶的负载量,从而减少加工成本。该工作计划将为将酶混合物与原料和预处理相匹配的巨大潜力提供概念证明。 WP2:设计未来的水解酶和原料。合成生物学提供了令人兴奋的工程机会,以促进植物细胞壁生物质中糖的释放。一个例子是“生物预处理”,这是一种基于利用和重新设计植物中已经发生的一些内源水解酶和过程的概念。改善细胞壁解构的另一个有吸引力的策略是通过植物内表达热稳定性细胞壁降解酶。我们将组织一个研讨会,以有效地捕捉此类合成生物学方法的潜力,并围绕“植物解构”和“多功能水解酶”的工程基因型制定战略文件。该工作包的成果为在植物细胞壁领域进一步实施合成生物学方法奠定了基础,并将使合作伙伴处于这一新兴研究领域的前沿。WP3:环境和遗传因素对细胞壁生物量质量和转化的影响。细胞壁生物量的组成和结构可能因组织、物种、品种和环境条件而显着不同。在气候变化和开发适合边际土地种植的甘蔗品种的背景下,绘制生物量质量的变化图尤为重要。细胞壁表型数据与糖化测定数据的整合将提供有关生物量组织、品种/遗传学和环境条件的差异如何影响细胞壁质量和生物量解构为其成分糖的重要信息。这项受控环境实验的结果为未来实地试验研究的转化和设计提供了一个平台,重点是利用巴西的边际土地。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Biorefining Potential of Wild-Grown Arundo donax, Cortaderia selloana and Phragmites australis and the Feasibility of White-Rot Fungi-Mediated Pretreatments.
  • DOI:
    10.3389/fpls.2021.679966
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    da Costa RMF;Winters A;Hauck B;Martín D;Bosch M;Simister R;Gomez LD;Batista de Carvalho LAE;Canhoto JM
  • 通讯作者:
    Canhoto JM
Nutrient and drought stress: implications for phenology and biomass quality in miscanthus.
  • DOI:
    10.1093/aob/mcy155
  • 发表时间:
    2019-10-29
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    da Costa RMF;Simister R;Roberts LA;Timms-Taravella E;Cambler AB;Corke FMK;Han J;Ward RJ;Buckeridge MS;Gomez LD;Bosch M
  • 通讯作者:
    Bosch M
Genetic engineering of grass cell wall polysaccharides for biorefining.
  • DOI:
    10.1111/pbi.12764
  • 发表时间:
    2017-09
  • 期刊:
  • 影响因子:
    13.8
  • 作者:
    Bhatia R;Gallagher JA;Gomez LD;Bosch M
  • 通讯作者:
    Bosch M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maurice Bosch其他文献

A rare inter-haplotypic recombination at the emS/em-locus contributed to the loss of self-incompatibility in trifoliate orange
EMS/EM-Locus的一种罕见的异型间重组,导致三裂橙的自我不相容性丧失
  • DOI:
    10.1016/j.xplc.2024.100940
  • 发表时间:
    2024-09-09
  • 期刊:
  • 影响因子:
    11.600
  • 作者:
    Jianbing Hu;Furong Guo;Zezhen Du;Peng Chen;Chunmei Shi;Jinzhi Zhang;Junli Ye;Xiuxin Deng;Robert M. Larkin;Wenbiao Jiao;Zongcheng Lin;Maurice Bosch;Lijun Chai
  • 通讯作者:
    Lijun Chai
Contrasting self-recognition rejection systems for self-incompatibility in emBrassica/em and emPapaver/em
芸苔属和罂粟属中自交不亲和性的对比自我识别排斥系统
  • DOI:
    10.1016/j.cub.2023.03.037
  • 发表时间:
    2023-06-05
  • 期刊:
  • 影响因子:
    7.500
  • 作者:
    Daphne R. Goring;Maurice Bosch;Vernonica E. Franklin-Tong
  • 通讯作者:
    Vernonica E. Franklin-Tong
University of Birmingham Self-incompatibility-induced programmed cell death in field poppy pollen involves dramatic acidification of the incompatible pollen tube cytosol
伯明翰大学在罂粟花粉中自不亲和性诱导的程序性细胞死亡涉及不相容的花粉管细胞质的急剧酸化
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Katie A. Wilkins;Maurice Bosch;Tamanna Haque;Nianjun Teng;Natalie S. Poulter;V. Franklin
  • 通讯作者:
    V. Franklin
Mechanical stimulation in plants: molecular insights, morphological adaptations, and agricultural applications in monocots
  • DOI:
    10.1186/s12915-025-02157-3
  • 发表时间:
    2025-02-25
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Annalene Hansen;Agnieszka Gladala-Kostarz;Rebecca Hindhaugh;John H. Doonan;Maurice Bosch
  • 通讯作者:
    Maurice Bosch

Maurice Bosch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maurice Bosch', 18)}}的其他基金

Elucidating the role of ROS in mediating self-incompatibility induced PCD
阐明 ROS 在介导自交不亲和性诱导的 PCD 中的作用
  • 批准号:
    BB/T00486X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 3.53万
  • 项目类别:
    Research Grant
F-actin associated proteins implicate new mechanisms involved in SI-PCD
F-肌动蛋白相关蛋白暗示 SI-PCD 涉及的新机制
  • 批准号:
    BB/P005489/1
  • 财政年份:
    2017
  • 资助金额:
    $ 3.53万
  • 项目类别:
    Research Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding T cell trafficking and function during antigenic interference
了解抗原干扰期间 T 细胞的运输和功能
  • 批准号:
    DP240101665
  • 财政年份:
    2024
  • 资助金额:
    $ 3.53万
  • 项目类别:
    Discovery Projects
Understanding the mechanisms underlying noise-induced damage of hair cell ribbon synapses
了解噪声引起的毛细胞带突触损伤的机制
  • 批准号:
    BB/Z514743/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.53万
  • 项目类别:
    Fellowship
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342025
  • 财政年份:
    2024
  • 资助金额:
    $ 3.53万
  • 项目类别:
    Standard Grant
Understanding the coordination of DNA mismatch repair using live-cell single-molecule imaging
使用活细胞单分子成像了解 DNA 错配修复的协调
  • 批准号:
    BB/Y001567/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.53万
  • 项目类别:
    Research Grant
Organelle teamwork: understanding how peroxisomes and mitochondria communicate in neuronal cell function
细胞器团队合作:了解过氧化物酶体和线粒体在神经细胞功能中如何沟通
  • 批准号:
    BB/Z514767/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.53万
  • 项目类别:
    Fellowship
RII Track-4:NSF: Understanding Perovskite Solar Cell Passivation at The Level of Organic Functional Groups through Ultrafast Spectroscopy
RII Track-4:NSF:通过超快光谱了解有机官能团水平的钙钛矿太阳能电池钝化
  • 批准号:
    2326788
  • 财政年份:
    2024
  • 资助金额:
    $ 3.53万
  • 项目类别:
    Standard Grant
CAREER: Understanding the Impact of Dephosphorylation Kinetics and Adapter Specificity on Synthetic T Cell Receptor Signaling and Function
职业:了解去磷酸化动力学和接头特异性对合成 T 细胞受体信号传导和功能的影响
  • 批准号:
    2339172
  • 财政年份:
    2024
  • 资助金额:
    $ 3.53万
  • 项目类别:
    Continuing Grant
Understanding how exocrine-derived signals promote beta cell growth
了解外分泌信号如何促进 β 细胞生长
  • 批准号:
    10750765
  • 财政年份:
    2024
  • 资助金额:
    $ 3.53万
  • 项目类别:
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342024
  • 财政年份:
    2024
  • 资助金额:
    $ 3.53万
  • 项目类别:
    Standard Grant
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
  • 批准号:
    2796588
  • 财政年份:
    2023
  • 资助金额:
    $ 3.53万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了